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5

Computational Modeling and Simulation as
Enablers for Biological Discovery

While the previous chapter deals with the ways in which computers and algorithms could support
existing practices of biological research, this chapter introduces a different type of opportunity. The
quantities and scopes of data being collected are now far beyond the capability of any human, or team
of humans, to analyze. And as the sizes of the datasets continue to increase exponentially, even existing
techniques such as statistical analysis begin to suffer. In this data-rich environment, the discovery of
large-scale patterns and correlations is potentially of enormous significance. Indeed, such discoveries
can be regarded as hypotheses asserting that the pattern or correlation may be important—a mode of
“discovery science” that complements the traditional mode of science in which a hypothesis is gener-
ated by human beings and then tested empirically.

For exploring this data-rich environment, simulations and computer-driven models of biological
systems are proving to be essential.

5.1 ON MODELS IN BIOLOGY

In all sciences, models are used to represent, usually in an abbreviated form, a more complex and
detailed reality. Models are used because in some way, they are more accessible, convenient, or familiar
to practitioners than the subject of study. Models can serve as explanatory or pedagogical tools, repre-
sent more explicitly the state of knowledge, predict results, or act as the objects of further experiments.
Most importantly, a model is a representation of some reality that embodies some essential and interest-
ing aspects of that reality, but not all of it.

Because all models are by definition incomplete, the central intellectual issue is whether the essen-
tial aspects of the system or phenomenon are well represented (the term “essential” has multiple
meanings depending on what aspects of the phenomenon are of interest). In biological phenomena,
what is interesting and significant is usually a set of relationships—from the interaction of two mol-
ecules to the behavior of a population in its environment. Human comprehension of biological systems
is limited, among other things, by that very complexity and by the problems that arise when attempting
to dissect a given system into simpler, more easily understood components. This challenge is com-
pounded by our current inability to understand relationships between the components as they occur in
reality, that is, in the presence of multiple, competing influences and in the broader context of time and
space.
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Different fields of science have traditionally used models for different purposes; thus, the nature of
the models, the criteria for selecting good or appropriate models, and the nature of the abbreviation or
simplification have varied dramatically. For example, biologists are quite familiar with the notion of
model organisms.1  A model organism is a species selected for genetic experimental analysis on the
basis of experimental convenience, homology to other species (especially to humans), relative simplic-
ity, or other attractive attributes. The fruit fly Drosophila melanogaster is a model organism attractive at
least in part because of its short generational time span, allowing many generations in the course of an
experiment.

At the most basic level, any abstraction of some biological phenomenon counts as a model. Indeed,
the cartoons and block diagrams used by most biologists to represent metabolic, signaling, or regulatory
pathways are models—qualitative models that lay out the connectivity of elements important to the
phenomenon. Such models throw away details (e.g., about kinetics) implicitly asserting that omission of
such details does not render the model irrelevant.

A second example of implicit modeling is the use of statistical tests by many biologists. All statisti-
cal tests are based on a null hypothesis, and all null hypotheses are based on some kind of underlying
model from which the probability distribution of the null hypothesis is derived. Even those biologists
who have never thought of themselves as modelers are using models whenever they use statistical tests.

Mathematical modeling has been an important component of several biological disciplines for
many decades. One of the earliest quantitative biological models involved ecology: the Lotka-Volterra
model of species competition and predator-prey relationships described in Section 5.2.4. In the context
of cell biology, models and simulations are used to examine the structure and dynamics of a cell or
organism’s function, rather than the characteristics of isolated parts of a cell or organism.2  Such models
must consider stochastic and deterministic processes, complex pleiotropy, robustness through redun-
dancy, modular design, alternative pathways, and emergent behavior in biological hierarchy.

In a cellular context, one goal of biology is to gain insight into the interactions, molecular or
otherwise, that are responsible for the behavior of the cell. To do so, a quantitative model of the cell
must be developed to integrate global organism-wide measurements taken at many different levels of
detail.

The development of such a model is iterative. It begins with a rough model of the cell, based on
some knowledge of the components of the cell and possible interactions among them, as well as prior
biochemical and genetic knowledge. Although the assumptions underlying the model are insufficient
and may even be inappropriate for the system being investigated, this rough model then provides a
zeroth-order hypothesis about the structure of the interactions that govern the cell’s behavior.

Implicit in the model are predictions about the cell’s response under different kinds of perturbation.
Perturbations may be genetic (e.g., gene deletions, gene overexpressions, undirected mutations) or
environmental (e.g., changes in temperature, stimulation by hormones or drugs). Perturbations are
introduced into the cell, and the cell’s response is measured with tools that capture changes at the
relevant levels of biological information (e.g., mRNA expression, protein expression, protein activation
state, overall pathway function). Box 5.1 provides some additional detail on cellular perturbations.

The next step is comparison of the model’s predictions to the measurements taken. This comparison
indicates where and how the model must be refined in order to match the measurements more closely.
If the initial model is highly incomplete, measurements can be used to suggest the particular compo-
nents required for cellular function and those that are most likely to interact. If the initial model is
relatively well defined, its predictions may already be in good qualitative agreement with measure-
ment, differing only in minor quantitative ways. When model and measurement disagree, it is often

1See, for example, http://www.nih.gov/science/models for more information on model organisms.
2Section 5.1 draws heavily on excerpts from T. Ideker, T. Galitski, and L. Hood, “A New Approach to Decoding Life: Systems

Biology,” Annual Review of Genomics and Human Genetics 2:343-372, 2001; and H. Kitano, “Systems Biology: A Brief Overview,”
Science 295(5560):1662-1664, 2002.
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necessary to create a number of more refined models, each incorporating a different mechanism under-
lying the discrepancies in measurement.

With the refined model(s) in hand, a new set of perturbations can be applied to the cell. Note that
new perturbations are informative only if they elicit different responses between models, and they are
most useful when the predictions of the different models are very different from one another. Neverthe-
less, a new set of perturbations is required because the predictions of the refined model(s) will generally
fit well with the old set of measurements.

The refined model that best accounts for the new set of measurements can then be regarded as the
initial model for the next iteration. Through this process, model and measurement are intended to
converge in such a way that the model’s predictions mirror biological responses to perturbation. Mod-
eling must be connected to experimental efforts so that experimentalists will know what needs to be
determined in order to construct a comprehensive description and, ultimately, a theoretical framework
for the behavior of a biological system. Feedback is very important, and it is this feedback, along with
the global—or, loosely speaking, genomic-scale—nature of the inquiry that characterizes much of 21st
century biology.

5.2 WHY BIOLOGICAL MODELS CAN BE USEFUL

In the last decade, mathematical modeling has gained stature and wider recognition as a useful tool
in the life sciences. Most of this revolution has occurred since the era of the genome, in which biologists
were confronted with massive challenges to which mathematical expertise could successfully be brought
to bear. Some of the success, though, rests on the fact that computational power has allowed scientists to
explore ever more complex models in finer detail. This means that the mathematician’s talent for
abstraction and simplification can be complemented with realistic simulations in which details not
amenable to analysis can be explored. The visual real-time simulations of modeled phenomena give

Box 5.1
Perturbation of Biological Systems

Perturbation of biological systems can be accomplished through a number of genetic mechanisms, such as the
following:

• High-throughput genomic manipulation. Increasingly inexpensive and highly standardized tools are avail-
able that enable the disruption, replacement, or modification of essentially any genomic sequence. Further-
more, these tools can operate simultaneously on many different genomic sequences.
• Systematic gene mutations. Although random gene mutations provide a possible set of perturbations, the
random nature of the process often results in nonuniform coverage of possible genotypes—some genes are
targeted multiple times, others not at all. A systematic approach can cover all possible genotypes and the
coverage of the genome is unambiguous.
• Gene disruption. While techniques of genomic manipulation and systematic gene mutation are often use-
ful in analyzing the behavior of model organisms such as yeast, they are not practical for application to
organisms of greater complexity (i.e., higher eukaryotes). On the other hand, it is often possible to induce
disruptions in the function of different genes, effectively silencing (or deleting) them to produce a biologically
significant perturbation.

SOURCE: Adapted from T. Ideker, T. Galitski, and L. Hood, “A New Approach to Decoding Life: Systems Biology,” Annual Review of
Genomics and Human Genetics 2:343-372, 2001.



120 CATALYZING INQUIRY

more compelling and more accessible interpretations of what the models predict.3  This has made it
easier to earn the recognition of biologists.

On the other hand, modeling—especially computational modeling—should not be regarded as an
intellectual panacea, and models may prove more hindrance than help under certain circumstances. In
models with many parameters, the state space to be explored may grow combinatorially fast so that no
amount of data and brute force computation can yield much of value (although it may be the case that
some algorithm or problem-related insight can reduce the volume of state space that must be explored
to a reasonable size). In addition, the behavior of interest in many biological systems is not characterized
as equilibrium or quasi-steady-state behavior, and thus convergence of a putative solution may never
be reached. Finally, modeling presumes that the researcher can both identify the important state vari-
ables and obtain the quantitative data relevant to those variables.4

Computational models apply to specific biological phenomena (e.g., organisms, processes) and are
used for a number of purposes as described below.

5.2.1 Models Provide a Coherent Framework for Interpreting Data

A biologist surveys the number of birds nesting on offshore islands and notices that the number
depends on the size (e.g., diameter) of the island: the larger the diameter d, the greater is the number of
nests N. A graph of this relationship for islands of various sizes reveals a trend. Here the mathematically
informed and uninformed part ways: simple linear least-squares fit of the data misses a central point.
A trivial “null model” based on an equal subdivision of area between nesting individuals predicts that
N~ d2, (i.e., the number of nests should be roughly proportional to the square of island area). This simple
geometric property relating area to population size gives a strong indication of the trend researchers
should expect to see. Departures from this trend would indicate that something else may be important.
(For example, different parts of islands are uninhabitable, predators prefer some islands to others, and
so forth.)

Although the above example is elementary, it illustrates the idea that data are best interpreted
within a context that shapes one’s expectations regarding what the data “ought” to look like; often a
mathematical (or geometric) model helps to create that context.

5.2.2 Models Highlight Basic Concepts of Wide Applicability

Among the earliest applications of mathematical ideas to biology are those in which population
levels were tracked over time and attempts were made to understand the observed trends. Malthus
proposed in 1798 the fitting of population data to exponential growth curves following his simple
model for geometric growth of a population.5  The idea that simple reproductive processes produce

3As one example, Ramon Felciano studied the use of “domain graphics” by biologists. Felciano argued that certain visual
representations (known as domain graphics) become so ingrained in the discourse of certain subdisciplines of biology that they
become good targets for user interfaces to biological data resources. Based on this notion, Felciano constructed a reusable
interface based on the standard two-dimensional layout of RNA secondary structure. See R. Felciano, R. Chen, and R. Altman,
“RNA Secondary Structure as a Reusable Interface to Biological Information Resources,” Gene 190:59-70, 1997.

4In some cases, obtaining the quantitative data is a matter of better instrumentation and higher accuracy. In other cases, the
data are not available in any meaningful sense of practice. For example, Richard Lewontin notes that the probability of survival
Ps of a particular genotype is an ensemble property, rather than the property of a single individual who either will or will not
survive. But if what is of interest is Ps as a function of the alternative genotypes deriving from a single locus, the effects of the
impacts deriving from other loci must be randomized. However, in sexually reproducing organisms, there is no way known to
produce an ensemble of individuals that are all identical with respect to a single locus but randomized over other loci. Thus, a
quantitative characterization of Ps is in practice not possible, and no alternative measurement technologies will be of much value
in solving this problem. See R. Lewontin, The Genetic Basis of Evolutionary Change, Columbia University Press, New York, 1974.

5T.R. Malthus, An Essay on the Principle of Population, First Edition, E.A. Wrigley and D. Souden, eds., Penguin Books,
Harmondsworth, England, 1798.



COMPUTATIONAL MODELING AND SIMULATION AS ENABLERS FOR BIOLOGICAL DISCOVERY 121

exponential growth (if birth rates exceed mortality rates) or extinction (in the opposite case) is a funda-
mental principle: its applicability in biology, physics, chemistry, as well as simple finance, is central.

An important refinement of the Malthus model was proposed in 1838 to explain why most popula-
tions do not experience exponential growth indefinitely. The refinement was the idea of the density-
dependent growth law, now known as the logistic growth model.6  Though simple, the Verhulst model
is still used widely to represent population growth in many biological examples. Both Malthus and
Verhulst models relate observed trends to simple underlying mechanisms; neither model is fully accu-
rate for real populations, but deviations from model predictions are, in themselves, informative, be-
cause they lead to questions about what features of the real systems are worthy of investigation.

More recent examples of this sort abound. Nonlinear dynamics has elucidated the tendency of
excitable systems (cardiac tissue, nerve cells, and networks of neurons) to exhibit oscillatory, burst, and
wave-like phenomena. The understanding of the spread of disease in populations and its sensitive
dependence on population density arose from simple mathematical models. The same is true of the
discovery of chaos in the discrete logistic equation (in the 1970s). This simple model and its mathemati-
cal properties led to exploration of new types of dynamic behavior ubiquitous in natural phenomena.
Such biologically motivated models often cross-fertilize other disciplines: in this case, the phenomenon
of chaos was then found in numerous real physical, chemical, and mechanical systems.

5.2.3 Models Uncover New Phenomena or Concepts to Explore

Simple conceptual models can be used to uncover new mechanisms that experimental science has
not yet encountered. The discovery of chaos mentioned above is one of the clearest examples of this
kind. A second example of this sort is Turing’s discovery that two chemicals that interact chemically in
a particular way (activate and inhibit one another) and diffuse at unequal rates could give rise to “peaks
and valleys” of concentration. His analysis of reaction-diffusion (RD) systems showed precisely what
ranges of reaction rates and rates of diffusion would result in these effects, and how properties of the
pattern (e.g., distance between peaks and valleys) would depend on those microscopic rates. Later
research in the mathematical community also uncovered how other interesting phenomena (traveling
waves, oscillations) were generated in such systems and how further details of patterns (spots, stripes,
etc.) could be affected by geometry, boundary conditions, types of chemical reactions, and so on.

Turing’s theory was later given physical manifestation in artificial chemical systems, manipulated
to satisfy the theoretical criteria of pattern formation regimes. And, although biological systems did not
produce simple examples of RD pattern formation, the theoretical framework originating in this work
motivated later more realistic and biologically based modeling research.

5.2.4 Models Identify Key Factors or Components of a System

Simple conceptual models can be used to gain insight, develop intuition, and understand “how
something works.” For example, the Lotka-Volterra model of species competition and predator-prey7  is
largely conceptual and is recognized as not being very realistic. Nevertheless, this and similar models
have played a strong role in organizing several themes within the discipline: for example, competitive
exclusion, the tendency for a species with a slight advantage to outcompete, dominate, and take over
from less advantageous species; the cycling behavior in predator-prey interactions; and the effect of

6P.F. Verhulst, “Notice sur la loi que la population suit dans son accroissement,” Correspondence Mathématique et Physique, 1838.
7A.J. Lotka, Elements of Physical Biology, Williams & Wilkins Co., Baltimore, MD, 1925; V. Volterra, “Variazioni e fluttuazioni

del numero d’individui in specie animali conviventi,” Mem. R. Accad. Naz. dei Lincei., Ser. VI, Vol. 2, 1926. The Lotka-Volterra
model is a set of coupled differential equations that relate the densities of prey and predator given parameters involving the
predator-free rate of prey population increase, the normalized rate at which predators can successfully remove prey from the
population, the normalized rate at which predators reproduce, and the rate at which predators die.
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resource limitations on stabilizing a population that would otherwise grow explosively. All of these
concepts arose from mathematical models that highlighted and explained dynamic behavior within the
context of simple models. Indeed, such models are useful for helping scientists to recognize patterns
and predict system behavior, at least in gross terms and sometimes in detail.

5.2.5 Models Can Link Levels of Detail (Individual to Population)

Biological observations are made at many distinct hierarchies and levels of detail. However, the
links between such levels are notoriously difficult to understand. For example, the behavior of single
neurons and their response to inputs and signaling from synaptic connections might be well known.
The behavior of a large assembly of such neurons in some part of the central nervous system can be
observed macroscopically by imaging or electrode recording techniques. However, how the two levels
are interconnected remains a massive challenge to scientific understanding. Similar examples occur in
countless settings in the life sciences: due to the complexity of nonlinear interactions, it is nearly impos-
sible to grasp intuitively how collections of individuals behave, what emergent properties of these
groups arise, or the significance of any sensitivity to initial conditions that might be magnified at higher
levels of abstraction. Some mathematical techniques (averaging methods, homogenization, stochastic
methods) allow the derivation of macroscopic statements based on assumptions at the microscopic, or
individual, level. Both modeling and simulation are important tools for bridging this gap.

5.2.6 Models Enable the Formalization of Intuitive Understandings

Models are useful for formalizing intuitive understandings, even if those understandings are partial
and incomplete. What appears to be a solid verbal argument about cause and effect can be clarified and
put to a rigorous test as soon as an attempt is made to formulate the verbal arguments into a mathemati-
cal model. This process forces a clarity of expression and consistency (of units, dimensions, force
balance, or other guiding principles) that is not available in natural language. As importantly, it can
generate predictions against which intuition can be tested.

Because they run on a computer, simulation models force the researcher to represent explicitly
important components and connections in a system. Thus, simulations can only complement, but never
replace, the underlying formulation of a model in terms of biological, physical, and mathematical
principles. That said, a simulation model often can be used to indicate gaps in one’s knowledge of some
phenomenon, at which point substantial intellectual work involving these principles is needed to fill the
gaps in the simulation.

5.2.7 Models Can Be Used as a Tool for Helping to Screen Unpromising Hypotheses

In a given setting, quantitative or descriptive hypotheses can be tested by exploring the predictions
of models that specify precisely what is to be expected given one or another hypothesis. In some cases,
although it may be impossible to observe a sequence of biological events (e.g., how a receptor-ligand
complex undergoes sequential modification before internalization by the cell), downstream effects may
be observable. A model can explore the consequences of each of a variety of possible sequences can and
help scientists to identify the most likely candidate for the correct sequence. Further experimental
observations can then refine one’s understanding.

5.2.8 Models Inform Experimental Design

Modeling properly applied can accelerate experimental efforts at understanding. Theory embedded
in the model is an enabler for focused experimentation. Specifically, models can be used alongside
experiments to help optimize experimental design, thereby saving time and resources. Simple models
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give a framework for observations (as noted in Section 5.2.1) and thereby suggest what needs to be
measured experimentally and, indeed, what need not be measured—that is how to refine the set of
observations so as to extract optimal knowledge about the system. This is particularly true when models
and experiments go hand-in-hand. As a rule, several rounds of modeling and experimentation are
necessary to lead to informative results.

Carrying these general observations further, Selinger et al.8  have developed a framework for un-
derstanding the relationship between the properties of certain kinds of models and the experimental
sampling required for “completeness” of the model. They define a model as a set of rules that maps a set
of inputs (e.g., possible descriptions of a cell’s environment) to a set of outputs (e.g., the resulting
concentrations of all of the cell’s RNAs and proteins). From these basic properties, Selinger et al. are able
to determine the order of magnitude of the number of measurements needed to populate the space of all
possible inputs (e.g., environmental conditions) with enough measured outputs (e.g., transcriptomes,
proteomes) to make prediction feasible, thereby establishing how many measurements are needed to
adequately sample input space to allow the rule parameters to be determined.

Using this framework, Salinger et al. estimate the experimental requirements for the completeness
of a discrete transcriptional network model that maps all N genes as inputs to all N genes as outputs in
which the genes can take on three levels of expression (low, medium, and high) and each gene has, at
most, K direct regulators. Applying this model to three organisms—Mycoplasma pneumoniae, Escherichia
coli, and Homo sapiens—they find that 80, 40,000, and 700,000 transcriptome experiments, respectively,
are necessary to fill out this model. They further note that the upper-bound estimate of experimental
requirements grows exponentially with the maximum number of regulatory connections K per gene,
although genes tend to have a low K, and that the upper-bound estimate grows only logarithmically
with the number of genes N, making completeness feasible even for large genetic networks.

5.2.9 Models Can Predict Variables Inaccessible to Measurement

Technological innovation in scientific instrumentation has revolutionized experimental biology.
However, many mysteries of the cell, of physiology, of individual or collective animal behavior, and of
population-level or ecosystem-level dynamics remain unobservable. Models can help link observations
to quantities that are not experimentally accessible. At the scale of a few millimeters, Marée and
Hogeweg recently developed9  a computational model based on a cellular automaton for the behavior of
the social amoeba Dictyostelium discoideum. Their model is based on differential adhesion between cells,
cyclic adenosine monophosphate (cAMP) signaling, cell differentiation, and cell motion. Using detailed
two- and three-dimensional simulations of an aggregate of thousands of cells, the authors showed how
a relatively small set of assumptions and “rules” leads to a fully accurate developmental pathway.
Using the simulation as a tool, they were able to explore which assumptions were blatantly inappropri-
ate (leading to incorrect outcomes). In its final synthesis, the Marée-Hogeweg model predicts dynamic
distributions of chemicals and of mechanical pressure in a fully dynamic simulation of the culminating
Dictyostelium slug. Some, but not all, of these variables can be measured experimentally: those that are
measurable are well reproduced by the model. Those that cannot (yet) be measured are predicted inside
the evolving shape. What is even more impressive: the model demonstrates that the system has self-
correcting properties and accounts for many experimental observations that previously could not be
explained.

8D.W. Selinger, M.A. Wright, and G.M. Church, “On the Complete Determination of Biological Systems,” Trends in Biotechnol-
ogy 21(6):251-254, 2003.

9A.F.M. Marée and P. Hogeweg, “How Amoeboids Self-organize into a Fruiting Body: Multicellular Coordination in
Dictyostelium discoideum,” Proceedings of the National Academy of Sciences 98(7):3879-3883, 2001.
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5.2.10 Models Can Link What Is Known to What Is Yet Unknown

In the words of Pollard, “Any cellular process involving more than a few types of molecules is too
complicated to understand without a mathematical model to expose assumptions and to frame the
reactions in a rigorous setting.”10  Reviewing the state of the field in cell motility and the cytoskeleton,
he observes that even with many details of the mechanism as yet controversial or unknown, modeling
plays an important role. Referring to a system (of actin and its interacting proteins) modeled by Mogilner
and Edelstein-Keshet,11  he points to advantages gained by the mathematical framework: “A math-
ematical model incorporating molecular reactions and physical forces correctly predicts the steady-state
rate of cellular locomotion.” The model, he notes, correctly identifies what limits the motion of the cell,
predicts what manipulations would change the rate of motion, and thus suggests experiments to per-
form. While details of some steps are still emerging, the model also distinguishes quantitatively be-
tween distinct hypotheses for how actin filaments are broken down for purposes of recycling their
components.

5.2.11 Models Can Be Used to Generate Accurate Quantitative Predictions

Where detailed quantitative information exists about components of a system, about underlying
rules or interactions, and about how these components are assembled into the system as a whole,
modeling may be valuable as an accurate and rigorous tool for generating quantitative predictions.
Weather prediction is one example of a complex model used on a daily basis to predict the future. On
the other hand, the notorious difficulties of making accurate weather predictions point to the need for
caution in adopting the conclusions even of classical models, especially for more than short-term pre-
dictions, as one might expect from mathematically chaotic systems.

5.2.12 Models Expand the Range of Questions That Can Meaningfully Be Asked12

For much of life science research, questions of purpose arise about biological phenomena.  For
instance, the question, Why does the eye have a lens? most often calls for the purpose of the lens—to
focus light rays—and only rarely for a description of the biological mechanism that creates the lens.
That such an answer is meaningful is the result of evolutionary processes that shape biological entities
by enhancing their ability to carry out fitness-enhancing functions. (Put differently, biological entities
are the result of nature’s engineering of devices to perform the function of survival; this perspective is
explored further in Chapter 6.)

Lander points out that molecular biologists traditionally have shied away from teleological matters,
and that geneticists generally define function not in terms of the useful things a gene does, but by what
happens when the gene is altered. However, as the complexity of biological mechanism is increasingly
revealed, the identification of a purpose or a function of that mechanism has enormous explanatory
power. That is, what purpose does all this complexity serve?

As the examples in Section 5.4 illustrate, computational modeling is an approach to exploring the
implications of the complex interactions that are known from empirical and experimental work. Lander
notes that one general approach to modeling is to create models in which networks are specified in
terms of elements and interactions (the network “topology”), but the numerical values that quantify
those interactions (the parameters) are deliberately varied over wide ranges to explore the functionality
of the network—whether it acts as a “switch,” “filter,” “oscillator,” “dynamic range adjuster,” “pro-
ducer of stripes,” and so on.

10T.D. Pollard, “The Cytoskeleton, Cellular Motility and the Reductionist Agenda,” Nature 422(6933):741-745, 2003.
11A. Mogilner and L. Edelstein-Keshet, “Regulation of Actin Dynamics in Rapidly Moving Cells: A Quantitative Analysis,”

Biophysical Journal 83(3):1237-1258, 2002.
12Section 5.2.12 is based largely on A.D. Lander, “A Calculus of Purpose,” PLoS Biology 2(6):e164, 2004.
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Lander explains the intellectual paradigm for determining function as follows:

By investigating how such behaviors change for different parameter sets—an exercise referred to as
“exploring the parameter space”—one starts to assemble a comprehensive picture of all the kinds of
behaviors a network can produce. If one such behavior seems useful (to the organism), it becomes a
candidate for explaining why the network itself was selected; i.e., it is seen as a potential purpose for the
network. If experiments subsequently support assignments of actual parameter values to the range of
parameter space that produces such behavior, then the potential purpose becomes a likely one.

5.3 TYPES OF MODELS13

5.3.1 From Qualitative Model to Computational Simulation

Biology makes use of many different types of models. In some cases, biological models are qualita-
tive or semiquantitative. For example, graphical models show directional connections between compo-
nents, with the directionality indicating influence. Such models generally summarize a great deal of
known information about a pathway and facilitate the formation of hypotheses about network function.
Moreover, the use of graphical models allows researchers to circumvent data deficiencies that might be
encountered in the development of more quantitative (and thus data-intensive) models. (It has also
been argued that probabilistic graphical models provide a coherent, statistically sound framework that
can be applied to many problems, and that certain models used by biologists, such as hidden Markov
models or Bayesian Networks), can be regarded as special cases of graphical models.14 )

On the other hand, the forms and structures of graphical models are generally inadequate to express
much detail, which might well be necessary for mechanistic models. In general, qualitative models do not
account for mechanisms, but they can sometimes be developed or analyzed in an automated manner.
Some attempts have been made to develop formal schemes for annotating graphical models (Box 5.2).15

Qualitative models can be logical or statistical as well. For example, statistical properties of a graph
of protein-protein interaction have been used to infer the stability of a network’s function against most
“deletions” in the graph.16  Logical models can be used when data regarding mechanism are unavail-
able and have been developed as Boolean, fuzzy logical, or rule-based systems that model complex
networks17  or genetic and developmental systems.

In some cases, greater availability of data (specifically, perturbation response or time-series data)
enables the use of statistical influence models. Linear,18  neural network-like,19  and Bayesian20  models
have all been used to deduce both the topology of gene expression networks and their dynamics. On the

13Section 5.3 is adapted from A.P. Arkin, “Synthetic Cell Biology,” Current Opinion in Biotechnology 12(6):638-644, 2001.
14See, for example, Y. Moreau, P. Antal, G. Fannes, and B. De Moor, “Probabilistic Graphical Models for Computational

Biomedicine, Methods of Information in Medicine 42(2):161-168, 2003.
15K.W. Kohn, “Molecular Interaction Map of the Mammalian Cell Cycle: Control and DNA Repair Systems,” Molecular Biology

of the Cell 10(8):2703-2734, 1999; I. Pirson, N. Fortemaison, C. Jacobs, S. Dremier, J.E. Dumont, and C. Maenhaut, “The Visual
Display of Regulatory Information and Networks,” Trends in Cell Biology 10(10):404-408, 2000. (Both cited in Arkin, 2001.)

16H. Jeong, S.P. Mason, A.L. Barabasi, and Z.N. Oltvai, “Lethality and Centrality in Protein Networks,” Nature 411(6833):41-42,
2001; H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, “The Largescale Organization of Metabolic Networks,”
Nature 407(6804):651-654, 2000. (Cited in Arkin, 2001.)

17D. Thieffry and R. Thomas, “Qualitative Analysis of Gene Networks,” pp. 77-88 in Pacific Symposium on Biocomputing, 1998.
(Cited in Arkin, 2001.)

18P. D’Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi, “Linear Modeling of mRNA Expression Levels During CNS Develop-
ment and Injury,” pp. 41-52 in Pacific Symposium on Biocomputing, 1999. (Cited in Arkin, 2001.)

19E. Mjolsness, D.H. Sharp, and J. Reinitz, “A Connectionist Model of Development,” Journal of Theoretical Biology 152(4):429-
453, 1999. (Cited in Arkin, 2001.)

20N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using Bayesian Networks to Analyze Expression Data,” Journal of
Computational Biology 7(3-4):601-620, 2000. (Cited in Arkin, 2001.)
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other hand, statistical influence models are not causal and may not lead to a better understanding of
underlying mechanisms.

Quantitative models make detailed statements about biological processes and hence are easier to
falsify than more qualitative models. These models are intended to be predictive and are useful for
understanding points of control in cellular networks and for designing new functions within them.

Some models are based on power law formalisms.21  In such cases, the data are shown to fit generic
power laws, and the general theory of power law scaling (for example) is used to infer some degree of
causal structure. They do not provide detailed insight into mechanism, although power law models
form the basis for a large class of metabolic control analyses and dynamic simulations.

Computational models—simulations—represent the other end of the modeling spectrum. Simula-
tion is often necessary to explore the implications of a model, especially its dynamical behavior, because

Box 5.2
On Graphical Models

A large fraction of today’s knowledge of biochemical or genetic regulatory networks is represented either as
text or as cartoon-like diagrams. However, text has the disadvantage of being inherently ambiguous, and
every reader must reinterpret the text of a journal article. Diagrams are usually informal, often confusing, and
thus fail to present all of the information that is available to the presenter of the research. For example, the
meanings of nodes and arcs within a diagram are inconsistent—one arrow may mean activation, but another
arrow in the same diagram may mean transition of the state or translocation of materials.

To remedy this state of affairs, a system of graphical representation should be powerful enough to express
sufficient information in a clearly visible and unambiguous way and should be supported by software tools.
There are several criteria for a graphical notation system, including the following:

1. Expressiveness. The notation system should be able to describe every possible relationship among the
entities in a system—for example, those between genes and proteins in a biological model.
2. Semantical unambiguity. Notation should be unambiguous. Different semantics should be assigned to
different symbols that are clearly distinguishable.
3. Visual unambiguity. Each symbol should be identified clearly and not be mistaken with other symbols.
This feature should be maintained with low-resolution displays, using only black and white.
4. Extension capability. The notation system should be flexible enough to add new symbols and relationships
in a consistent manner. This may include the use of color coding to enhance expressiveness and readability,
but information should not be lost even with black-and-white displays.
5. Mathematical translation. The notation should be able to convert itself into mathematical formalisms, such
as differential equations, so that it can be applied directly for numerical analysis.
6. Software support. The notation should be supported by software for its drawing, viewing, editing, and
translation into mathematical formalisms.

No current graphical notation system satisfies all of these criteria fully, although a number of systems satisfy
some of them.1

SOURCE: Adapted by permission from H. Kitano, “A Graphical Notation for Biochemical Networks,” Biosilico 1(5):159-176. Copyright
2003 Elsevier.

1See, for example, K.W. Kohn, “Molecular Interaction Map of the Mammalian Cell Cycle Control and DNA Repair Systems,” Molecular
Biology of the Cell 10(8):2703-2734, 1999; K. Kohn, “Molecular Interaction Maps as Information Organizers and Simulation Guides,” Chaos
11(1):84-97, 2001.

21E.O. Voit and T. Radivoyevitch, “Biochemical Systems Analysis of Genomewide Expression Data,” Bioinformatics 16(11):1023-
1037, 2000. (Cited in Arkin, 2001.)
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human intuition about complex nonlinear systems is often inadequate.22  Lander cites two examples.
The first is that “intuitive thinking about MAP [mitogen-activated protein] kinase pathways led to the
long-held view that the obligatory cascade of three sequential kinases serves to provide signal amplifi-
cation. In contrast, computational studies have suggested that the purpose of such a network is to
achieve extreme positive cooperativity, so that the pathway behaves in a switch-like, rather than a
graded, fashion.”23  The second example is that while intuitive interpretations of experiments in the
study of morphogen gradient formation in animal development led to the conclusion that simple
diffusion is not adequate to transport most morphogens, computational analysis of the same experi-
mental data led the opposite conclusion.24

Simulation, which traces functional biological processes through some period of time, generates
results that can be checked for consistency with existing data (“retrodiction” of data) and can also
predict new phenomena not explicitly represented in but nevertheless consistent with existing datasets.
Note also that when a simulation seeks to capture essential elements in some oversimplified and
idealized fashion, it is unrealistic to expect the simulation to make detailed predictions about specific
biological phenomena. Such simulations may instead serve to make qualitative predictions about ten-
dencies and trends that become apparent only when averaged over a large number of simulation runs.
Alternatively, they may demonstrate that certain biological behaviors or responses are robust and do
not depend on particular details of the parameters involved within a very wide range.

Simulations can also be regarded as a nontraditional form of scientific communication. Tradition-
ally, scientific communications have been carried by journal articles or conference presentations. Though
articles and presentations will continue to be important, simulations—in the form of computer pro-
grams—can be easily shared among members of the research community, and the explicit knowledge
embedded in them can become powerful points of departure for the work of other researchers.

With the availability of cheap and powerful computers, modeling and simulation have become
nearly synonymous. Yet, a number of subtle differences should be mentioned. Simulation can be used
as a tool on its own or as a companion to mathematical analysis.

In the case of relatively simple models meant to provide insight or reveal a concept, analytical
and mathematical methods are of primary utility. With simple strokes and pen-and-paper compu-
tations, the dependence of behavior on underlying parameters (such as rate constants), conditions
for specific dynamical behavior, and approximate connections between macroscopic quantities
(e.g., the velocity of a cell) and underlying microscopic quantities (such the number of actin fila-
ments causing the membrane to protrude) can be revealed. Simulations are not as easily harnessed
to making such connections.

Simulations can be used hand-in-hand with analysis for simple models: exploring slight changes in
equations, assumptions, or rates and gaining familiarity can guide the best directions to explore with
simple models as well. For example, G. Bard Ermentrout at the University of Pittsburgh developed XPP
software as an evolving and publicly available experimental modeling tool for mathematical biolo-
gists.25  XPP has been the foundation of computational investigations in many challenging problems in
neurophysiology, coupled oscillators, and other realms.

Mathematical analysis of models, at any level of complexity, is often restricted to special cases that
have simple properties: rectangular boundaries, specific symmetries, or behavior in a special class. Simu-
lations can expand the repertoire and allow the modeler to understand how analysis of the special cases

22A.D. Lander, “A Calculus of Purpose,” PLoS Biology 2 (6):e164, 2004.
23C.Y. Huang and J.E. Ferrell, “Ultrasensitivity in the Mitogen Activated Protein Kinase Cascade,” Proceedings of the National

Academy of Sciences 93(19):10078-10083, 1996. (Cited in Lander, “A Calculus of Purpose,” 2004.)
24A.D. Lander, Q. Nie, and F.Y. Wan, “Do Morphogen Gradients Arise by Diffusion?” Developmental Cell 2(6):785-796, 2002.

(Cited in Lander, 2004.)
25See http://www.math.pitt.edu/~bard/xpp/xpp.html.
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relates to more realistic situations. In this case, simulation takes over where analysis ends.26  Some systems
are simply too large or elaborate to be understood using analytical techniques. In this case, simulation is a
primary tool. Forecasts requiring heavy “number-crunching” (e.g., weather prediction, prediction of cli-
mate change), as well as those involving huge systems of diverse interacting components (e.g., cellular
networks of signal transduction cascades), are only amenable to exploration using simulation methods.

More detailed models require a detailed consideration of chemical or physical mechanisms involved
(i.e., these models are mechanistic27 ). Such models require extensive details of known biology and have
the largest data requirements. They are, in principle, the most predictive. In the extreme, one can imagine
a simulation of a complete cell—an “in silico” cell or cybercell—that provides an experimental framework
in which to investigate many possible interventions. Getting the right format, and ensuring that the in
silico cell is a reasonable representation of reality, has been and continues to be an enormous challenge.

No reasonable model is based entirely on a bottom-up analysis. Consider, for example, that solving
Schrödinger’s equation for the millions of atoms in a complex molecule in solution would be a futile
exercise, even if future supercomputers could handle this task. The question to ask is how and why such
work would be contemplated: finding the correct level of representation is one of the key steps to good
scientific work. Thus, some level of abstraction is necessary to render any model both interesting
scientifically and feasible computationally. Done properly, abstractions can clarify the sources of con-
trol in a network and indicate where more data are necessary. At the same time, it may be necessary to
construct models at higher degrees of biophysical realism and detail in any event, either because
abstracted models often do not capture the essential behavior of interest or to show that indeed the
addition of detail does not affect the conclusions drawn from the abstracted model.28

It is also helpful to note the difference between a computational artifact that reproduces some
biological behavior (a task) and a simulation. In the former case, the relevant question is: “How well
does the artifact accomplish the task?” In the latter case, the relevant question is: “How closely does the
simulation match the essential features of the system in question?”

Most computer scientists would tend to assign higher priority to performance than to simulation.
The computer scientist would be most interested in a biologically inspired approach to a computer
science problem when some biological behavior is useful in a computational or computer systems
context and when the biologically inspired artifact can demonstrate better performance than is possible
through some other way of developing or inspiring the artifact. A model of a biological system then
becomes useful to the computer scientist only to the extent that high-fidelity mimicking of how nature
accomplishes a task will result in better performance of that task.

By contrast, biologists would put greater emphasis on simulation. Empirically tested and validated
simulations with predictive capabilities would increase their confidence that they understood in some
fundamental sense the biological phenomenon in question. However, it is important to note that be-
cause a simulation is judged on the basis of how closely it represents the essential features of a biological
system, the question “What counts as essential?” is central (Box 5.3). More generally, one fundamental
focus of biological research is a determination of what the “essential” features of a biological system are,

26At times, it is also desirable to employ a mix of analysis and simulation. Analysis would be used to generate the basic
equations underlying a complex phenomenon. Solutions to these equations would then be explored and with luck, considerably
simplified. The simplified models can then be simulated. See, for example, E.A. Ezrachi, R. Levi, J.M. Camhi, and H. Parnas,
“Right-Left Discrimination in a Biologically Oriented Model of the Cockroach Escape System,” Biological Cybernetics 81(2):89-99,
1999.

27Note that mechanistic models can be stochastic—the term “mechanistic” should not be taken to mean deterministic.
28Tensions between these perspectives were apparent even in reviews of the draft of this report. In commenting on neuro-

science topics in this report, advocates of the first point of view argued that ultrarealistic simulations accomplish little to further
our understanding about how neurons work. Advocates of the second point of view argued that simple neural models could not
capture the implications of the complex dynamics of each neuron and its synapses and that these models would have to be
supplemented by more physiological ideas. From the committee’s perspective, both points of view have merit, and the scientific
challenge is to find an appropriate simplification or abstraction that does capture the interesting behavior at reasonable fidelity.
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recognizing that what is “essential” cannot be determined once and for all, but rather depends on the
class of questions under consideration.

5.3.2 Hybrid Models

Hybrid models are models composed of objects with different mathematical representations. These
allow a model builder the flexibility to mix modeling paradigms to describe different portions of a
complex system. For example, in a hybrid model, a signal transduction pathway might be described by
a set of differential equations, and this pathway could be linked to a graphical model of the genetic
regulatory network that it influences. An advantage of hybrid models is that model components can
evolve from high-level abstract descriptions to low-level detailed descriptions as the components are
better characterized and understood.

An example of hybrid model use is offered by McAdams and Shapiro,29  who point out that genetic
networks involving large numbers of genes (more than tens) are difficult to analyze. Noting the “many
parallels in the function of these biochemically based genetic circuits and electrical circuits,” they
propose “a hybrid modeling approach that integrates conventional biochemical kinetic modeling within
the framework of a circuit simulation. The circuit diagram of the bacteriophage lambda lysislysogeny
decision circuit represents connectivity in signal paths of the biochemical components. A key feature of
the lambda genetic circuit is that operons function as active integrated logic components and introduce
signal time delays essential for the in vivo behavior of phage lambda.”

There are good numerical methods for simulating systems that are formulated in terms of ordinary
differential equations or algebraic equations, although good methods for analysis of such models are
still lacking. Other systems, such as those that mix continuous with discrete time or Markov processes
with partial differential equations, are sometimes hard to solve even by numerical methods. Further, a
particular model object may change mathematical representation during the course of the analysis. For
example, at the beginning of a biosynthetic process there may be very small amounts of product so its

Box 5.3
An Illustration of “Essential”

Consider the following modeling task. The phenomenon of interest is a monkey learning to fetch a banana
from behind a transparent conductive screen. The first time, the monkey sees the banana, goes straight ahead,
bumps into the screen, and then goes around the screen to the banana. The second time, the monkey, having
discovered the existence of the screen that blocks his way, goes directly around the screen to the banana.

To model this phenomenon, a system is constructed, consisting of a charged ball and a metal sheet. The
charged metal ball is hung from a string above the banana and then held at an angle so the screen separates
the ball and the banana. The first time the ball is released, the ball swings toward the screen, and then touches
it, transferring part of its charge to the screen. The similar charges on the screen and the ball now repel each
other, and the ball swings around the screen. The second time the ball is released, the ball sees a similarly
charged screen and goes around the screen directly.

This model reproduces the behavior of the monkey in the first instance. However, no one would claim that it
is an accurate model of the learning that takes place in the monkey’s brain, even though the model replicates
the most salient feature of the monkey’s learning consistently: both the ball and the monkey dodge the screen
on the second attempt. In other words, even though it demonstrates the same behavior, the model does not
represent the essential features of the biological system in question.

29See H.H. McAdams and L. Shapiro, “Circuit Simulation of Genetic Networks,” Science 269(5224):650-656, 1994.
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concentration would have to be modeled discretely. As more of it is synthesized, the concentration
becomes high enough that a continuous approximation is justified and is then more efficient for simu-
lation and analysis.

The point at which this switch is made is dependent not just on copy number but also on where in the
dynamical state space the system resides. If the system is near a bifurcation point, small fluctuations may be
significant. Theories of how to accomplish this dynamic switching are lacking. As models grow more
complex, different parts of the system will have to be modeled with different mathematical representations.
Also, as models from different sources begin to be joined, it is clear that different representations will be
used. It is critical that the theory and applied mathematics of hybrid dynamical systems be developed.

5.3.3 Multiscale Models

Multiscale models describe processes occurring at many time and length scales. Depending on the
biological system of interest, the data needed to provide the basis for a greater understanding of the
system will cut across several scales of space and time. The length dimensions of biological interest
range from small organic molecules to multiprotein complexes at 100 angstroms to cellular processes at
1,000 angstroms to tissues at 1-10 microns, and the interaction of human populations with the environ-
ment at the kilometer scale. The temporal domain includes the femtosecond chemistry of molecular
interactions to the millions of years of evolutionary time, with protein folding in seconds and cell and
developmental processes in minutes, hours, and days. In turn, the scale of the process involved (e.g.,
from the molecular scale to the ecosystem scale) affects both the complexity of the representation (e.g.,
molecule base, concentration based, at equilibrium or fully dynamic) and the modality of the represen-
tation (e.g., biochemical, genetic, genomic, electrophysiological, etc.).

Consider the heart as an example. The macroscopic unit of interest is the heartbeat, which lasts
about a second and involves the whole heart of 10 cm scale. But the cardiac action potential (the
electrical signal that initiates myocellular contractions) can change significantly on time scales of milli-
seconds as reflected in the appropriate kinetic equations. In turn, the molecular interactions that under-
lie kinetic flows occur on time scales on the order of femtoseconds. Across such variation in time scales,
it is not feasible to model 1015 molecular interactions in order to model a complete heartbeat. Fortu-
nately, in many situations the response with the shorter time scale will converge quickly to equilibrium
or quasi-steady-state behavior, obviating the need for a complete lower-level simulation.30

For most biological problems, the scale at which data could provide a central insight into the
operation of the whole system is not known, so multiple scales are of interest. Thus, biological models
have to allow for transition among different levels of resolution. A biologist might describe a protein as
a simple ellipsoid and then in the next breath explain the effect of a point mutation by the atomic-level
structural changes it causes in the active site.31

Identifying the appropriate ranges of parameters (e.g., rate constants that govern the pace of chemi-
cal reactions) remains one of the difficulties that every modeler faces sooner or later. As modelers know
well, even qualitative analysis of simple models depends on knowing which “leading-order terms” are
to be kept on which time scales. When the relative rates are entirely unknown—true of many biochemi-
cal steps in living cells—it is hard to know where to start and how to assemble a relevant model, a point
that underscores the importance of close dialogue between the laboratory biologist and the mathemati-
cal or computational modeler.

Finally, data obtained at a particular scale must be sufficient to summarize the essential biological
activity at that scale in order to be evaluated in the context of interactions at greater scales of complexity.
The challenge, therefore, is one of understanding not only the relationship of multiple variables operat-
ing at one scale of detail, but also the relationship of multivariable datasets collected at different scales.

30A.D. McCulloch and G. Huber, “Integrative Biological Modelling in Silico,” pp. 4-25 in ‘In Silico’ Simulation of Biological
Processes No. 247, Novartis Foundation Symposium, G. Bock and J.A. Goode, eds., John Wiley & Sons Ltd., Chichester, UK, 2002.

31D. Endy and R. Brent, “Modeling Cellular Behavior,” Nature 409(6818):391-395, 2001.
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5.3.4 Model Comparison and Evaluation

Models are ultimately judged by their ability to make predictions. Qualitative models predict trends
or types of dynamics that can occur, as well as thresholds and bifurcations that delineate one type of
behavior from another. Quantitative models predict values that can be compared to actual experimental
data. Therefore, the selection of experiments to be performed can be determined, at least in part, by their
usefulness in constraining a model or selecting one model from a set of competing models.

The first step in model evaluation is to replicate and test a computational model of biological
systems that has been published. However, most papers contain typographical errors and do not pro-
vide a complete specification of the biological properties that were represented in the model. One
should be able to extract the specification from the model’s source code, but for a whole host of reasons
it is not always possible to obtain the actual files that were used for the published work.

In the neuroscience field, ModelDB (http://senselab.med.yale.edu/senselab/modeldb/) is being
developed to answer the need for a database of published models used in neuroscience research.32  It is
part of the SenseLab project (http://senselab.med.yale.edu/), which is supported through the Human
Brain Project by the National Institute of Mental Health (NIMH), the National Institute of Neurologist
disorders and Stroke (NINDS), and the National Cancer Institute (NCI).

ModelDB is a curated database that is designed for convenient entry, search, and retrieval of models
written for any programming language or simulation environment. As of December 10, 2004, it con-
tained 141 downloadable models. Most of these are for NEURON, but 40 of them are for MATLAB,
GENESIS, SNNAP, or XPP, and there are also some models in C/C++ and FORTRAN. Database entries
are linked to the published literature so that users can more easily determine the “scientific context” of
any given model.

Although ModelDB is still in a developmental or research stage, it has already begun to have a positive
effect on computational modeling in neuroscience. Database logs indicate that it is seeing heavy usage, and
from personal communications the committee has learned that even experienced programmers who write
their own code in C/C++ are regularly examining models written for NEURON and other domain-specific
simulators, in order to determine key parameter values and other important details. Recently published
papers are beginning appear that cite ModelDB and the models it contains as sources of code, equations, or
parameters. Furthermore, a leading journal has adopted a policy that requires authors to make their source
code available as a condition of publication and encourages them to use ModelDB for this purpose.

As for model comparison, it is not possible to ascertain in isolation whether a given model is correct
since contradictory data may become available later, and indeed even “incorrect” models may make
correct predictions. Suitably complex models can be made to fit to any dataset, and one must guard
against “overfitting” a model. Thus, the predictions of a model must be viewed in the context of the
number of degrees of freedom of the model, and one measure that one model is better than another is a
judgment about which model best explains experimental data with the least model complexity. In some
cases, measures of the statistical significance of a model can be computed using a likelihood distribution
over predicated state variables taking into account the number of degrees of freedom present in the model.

At the same time, lessons learned over many centuries of scientific investigation regarding the use of
Occam’s Razor may have limited applicability in this context. Because biological phenomena are the result
of an evolutionary process that simply uses what is available, many biological phenomena are simply
cobbled together and in no sense can be regarded as the “simplest” way to accomplish something.

As noted in Footnote 28, there is a tension between the need to capture details faithfully in a model
and the desire to simplify those details so as to arrive at a representation that can be analyzed, understood
fully, and converted into scientific “knowledge.” There are numerous ways of reducing models that are
well known in applied mathematics communities. These include dimensional analysis and multiple time-
scale analysis (i.e., dissecting a system into parts that evolve rapidly versus those that change on a slower

32M.L. Hines, T. Morse, M. Migliore, N.T. Carnevale, and G.M. Shepherd, “ModelDB: A Database to Support Computational
Neuroscience,” Journal of Computational Neuroscience 17(1):7-11, 2004; B.J. Richmond, “Editorial Commentary,” Journal of Computa-
tional Neuroscience 17(1):5, 2004.
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time scale). In some cases, leaving out some of the interacting components (e.g., those whose interactions
are weakest or least significant) may be a workable method. In other cases, lumping together families or
groups of substances to form aggregate components or compartments works best. Sensitivity analysis of
alternative model structures and parameters can be performed using likelihood and significance mea-
sures. Sensitivity analysis is important to inform a model builder of the essential components of the model
and to attempt to reduce model complexity without loss of explanatory power.

Model evaluation can be complicated by the robustness of the biological organism being repre-
sented. Robustness generally means that the organism will endure and even prosper under a wide
range of conditions—which means that its behavior and responses are relatively insensitive to varia-
tions in detail.33  That is, such differences are unlikely to matter much for survival. (For example, the
modeling of genetic regulatory networks can be complicated by the fact that although the data may
show that a certain gene is expressed under certain circumstances, the biological function being served
may not depend on the expression of that gene.) On the other hand, this robustness may also mean that
a flawed understanding of detailed processes incorporated into a model that does explain survival
responses and behavior will not be reflected in the model’s output.34

Simulation models are essentially computer programs and hence suffer from all of the problems
that plague software development. Normal practice in software development calls for extensive testing
to see that a program returns the correct results when given test data for which the appropriate results
are known independently of the program as well as for independent code reviews. In principle, simula-
tion models of biological systems could be subject to such practices. Yet the fact that a given simulation
model returns results that are at variance with experimental data may be attributable to an inadequacy
of the underlying model or to an error in programming.35  Note also that public code reviews are
impossible if the simulation models are proprietary, as they often are when they are created by firms
seeking to obtain competitive advantage in the marketplace.

These points suggest a number of key questions in the development of a model.

• How much is given up by looking at simplified versions?
• How much poorer, and in what ways poorer, is a simplified model in its ability to describe the system?
• Are there other, new ways of simplifying and extracting salient features?
• Once the simplified representation is understood, how can the details originally left out be

reincorporated into a model of higher fidelity?

Finally, another approach to model evaluation is based on notions of logical consistency. This
approach uses program verification tools originally developed by computer scientists to determine
whether a given program is consistent with a given formal specification or property. In the biological
context, these tools are used to check the consistency and completeness of a model’s description of the
biological system’s processes. These descriptions are dynamic and thus permit “running” a model to
observe developments in time. Specifically, Kam et al. have demonstrated this approach using the
languages, methods, and tools of scenario-based reactive system design and applied it to modeling the
well-characterized process of cell fate acquisition during Caenorhabditis elegans vulval development.
(Box 5.4 describes the intellectual approach in more detail.36 )

33L.A. Segel, “Computing an Organism,” Proceedings of the National Academy of Sciences 98(7):3639-3640, 2001.
34On the basis of other work, Segel argues that a biological model enjoys robustness only if it is “correct’’ in certain essential features.
35Note also the well-known psychological phenomenon in programming—being a captive of one’s test data. Programming

errors that prevent the model from accounting for the data tend to be hunted down and fixed. However, if the model does
account for the data, there is a tendency to assume that the program is correct.

36N. Kam, D. Harel, H. Kugler, R. Marelly, A. Penueli, J. Hubbard, et al., “Formal Modeling of C. elegans Development: A
Scenario-based Approach,” pp. 4-20 in Proceedings of the First International Workshop on Computational Methods in Systems Biology
(CMSB03; Rovereto, Italy, February 2003), Vol. 2602, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg,
2003. This material is scheduled to appear in the following book: G. Ciobanu, ed., Modeling in Molecular Biology, Natural Comput-
ing Series, Springer, available at http://www.wisdom.weizmann.ac.il/~kam/CelegansModel/Publications/MMB_Celegans.pdf.
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Box 5.4
Formal Modeling of Caenorhabditis elegans Development

Our understanding of biology has become sufficiently complex that it is increasingly difficult to integrate all the
relevant facts using abstract reasoning alone. [Formal modeling presents] a novel approach to modeling biological
phenomena. It utilizes in a direct and powerful way the mechanisms by which raw biological data are amassed, and
smoothly captures that data within tools designed by computer scientists for the design and analysis of complex
reactive systems.

A considerable quantity of biological data is collected and reported in a form that can be called “condition-result”
data. The gathering is usually carried out by initializing an experiment that is triggered by a certain set of circum-
stances (conditions), following which an observation is made and the results recorded. The condition is most often
a perturbation, such as mutating genes or exposing cells to an altered environment. . . . [and] a large proportion of
biological data is reported as stories, or “scenarios,” that document the results of experiments conducted under
specific conditions.

The challenge of modeling these aspects of biology is to be able to translate such “condition-result” phenomena
from the “scenario”-based natural language format into a meaningful and rigorous mathematical language. Such
a translation process will allow these data to be integrated more comprehensively by the application of high-level
computer-assisted analysis. In order for it to be useful, the model must be rigorous and formal, and thus amenable
to verification and testing.

We have found that modeling methodologies originating in computer science and software engineering, and created
for the purpose of designing complex reactive systems, are conceptually well suited to model this type of condition-
result biological data. Reactive systems are those whose complexity stems not necessarily from complicated compu-
tation but from complicated reactivity over time. They are most often highly concurrent and time-intensive, and
exhibit hybrid behavior that is predominantly discrete in nature but has continuous aspects as well. The structure of
a reactive system consists of many interacting components, in which control of the behavior of the system is highly
distributed amongst the components. Very often the structure itself is dynamic, with its components being repeatedly
created and destroyed during the system’s life span.

The most widely used frameworks for developing models of such systems feature visual formalisms, which are both
graphically intuitive and mathematically rigorous. These are supported by powerful tools that enable full model
executability and analysis, and are linkable to graphical user interfaces (GUIs) of the system. This enables realistic
simulation prior to actual implementation. At present, such languages and tools—often based on the object-oriented
paradigm—are being strengthened by verification modules, making it possible not only to execute and simulate the
system models (test and observe) but also to verify dynamic properties thereof (prove). . . .

[M]any kinds of biological systems exhibit characteristics that are remarkably similar to those of reactive systems.
The similarities apply to many different levels of biological analysis, including those dealing with molecular, cellular,
organ-based, whole organism, or even population biology phenomena. Once viewed in this light, the dramatic
concurrency of events, the chain-reactions, the time-dependent patterns, and the event-driven discrete nature of
their behaviors, are readily apparent. Consequently, we believe that biological systems can be productively modeled
as reactive systems, using languages and tools developed for the construction of man-made systems. . . .

SOURCE: N. Kam et al., “Formal Modeling of C. elegans Development: A Scenario-based Approach,” pp. 4-20 in Proceedings of the First
International Workshop on Computational Methods in Systems Biology (CMSB03; Rovereto, Italy, February 2003), Vol. 2602, Lecture Notes
in Computer Science, Springer-Verlag, Berlin, Heidelberg, 2003, available at http://www.wisdom.weizmann.ac.il/~kam/CelegansModel/
Publications/MMB_Celegans.pdf. Reprinted with permission from Springer-Verlag.
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5.4 MODELING AND SIMULATION IN ACTION

The preceding discussion has been highly abstract. This section provides some illustrations of how
modeling and simulation have value across a variety of subfields in biology. No claim is made to
comprehensiveness, but the committee wishes to illustrate the utility of modeling and simulations at
levels of organization from gene to ecosystem.

5.4.1 Molecular and Structural Biology

5.4.1.1 Predicting Complex Protein Structures

Interactions between proteins are crucial to the functioning of all cells. While there is much experi-
mental information being gathered regarding protein structures, many interactions are not fully under-
stood and have to be modeled computationally. The topic of computational prediction of protein-
protein structure remains to be solved and is one of the most active areas of research in bioinformatics
and structural biology.

ZDOCK and RDOCK are two computer programs that address this problem, also known as protein
docking.37  ZDOCK is an initial stage protein docking program that performs a full search of the relative
orientations of two molecules (referred to by convention as the ligand and receptor) to determine their
best fit based on surface complementarity, electrostatics and desolvation. The efficiency of the algo-
rithm is enhanced by discretizing the molecules onto a grid and performing a fast Fourier transform
(FFT) to quickly explore the translational degrees of freedom.

RDOCK takes as input the ZDOCK predictions and improves them using two steps. The first step is
to improve the energetics of the prediction and remove clashes by performing small movements of the
predicted complex, using a program known as CHARMM. The second step is to rescore these mini-
mized predictions with more detailed scoring functions for electrostatics and desolvation.

The combination of these two algorithms has been tested and verified with a benchmark set of
proteins collected for use in testing docking algorithms. Now at version 2.0, this benchmark is publicly
available and contains 87 test cases. These test cases cover a breadth of interactions, such as antibody-
antigen, and cases involving significant conformational changes.

The ZDOCK-RDOCK programs have consistently performed well in the international docking
competition CAPRI (Figure 5.1). Some notable predictions were for the Rotavirus VP6/Fab (50 of 52
contacting residues correctly predicted), and SAG-1/Fab complex (61 of 70 contacts correct), and the
cellulosome cohesion-dockerin structure (50 of 55 contacts correct). In the first two cases, the number of
contacts in the ZDOCK-RDOCK predictions were the highest among all participating groups.

5.4.1.2 A Method to Discern a Functional Class of Proteins

The DNA-binding helix-turn-helix structural motif plays an essential role in a variety of cellular
pathways that include transcription, DNA recombination and repair, and DNA replication. Current
methods for identifying the motif rely on amino acid sequence, but since members of the motif belong
to different sequence families that have no sequence homology to each other, these methods have been
unable to identify all motif members.

A new method based on three-dimensional structure was created that involved the following
steps:38 (1) choosing a conserved component of the motif, (2) measuring structural features relative

37For more information, see http://zlab.bu.edu.
38W.A. McLaughlin and H.M. Berman, “Statistical Models for Discerning Protein Structures Containing the DNA-binding

Helix-Turn-Helix Motif,” Journal of Molecular Biology 330(1):43-55, 2003.
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to that component, and (3) creating classification models by comparing measurements of structures
known to contain the motif to measurements of structures known not to contain the motif. In this
case, the conserved component chosen was the recognition helix (i.e., the alpha helix that makes
sequence-specific contact with DNA), and two types of relevant measurements were the hydropho-
bic area of interaction between secondary structure elements (SSEs) and the relative solvent acces-
sibility of SSEs.

With a classification model created, the entire Protein Data Bank of experimentally measured struc-
tures was searched and new examples of the motif were found that have no detected sequence homol-
ogy with previously known examples. Two such examples are Esa1 histone acetyltransferase and
isoflavone 4-O-methyltransferase. The result emphasizes an important utility of the approach: sequence-
based methods used to discern a functional class of proteins may be supplemented through the use of a
classification model based on three-dimensional structural information.

FIGURE 5.1 The ZDOCK/RDOCK prediction for dockerin (in red) superposed on the crystal structure for CAPRI
Target 13, cohesin/dockerin. SOURCE: Courtesy of Brian Pierce and Zhiping Weng, Boston University.
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5.4.1.3 Molecular Docking

Using a simple, uniform representation of molecular surfaces that requires minimal parameteriza-
tion, Jain39  has constructed functions that are effective for scoring protein-ligand interactions, quantita-
tively comparing small molecules, and making comparisons of proteins in a manner that does not
depend on protein backbone. These methods rely on computational approaches that are rooted in
understanding the physics of molecular interactions, but whose functional forms do not resemble those
used in physics-based approaches. That is, this problem can be treated as a pure computer science
problem that can be solved using combinations of scoring and search or optimization techniques pa-
rameterized with the use of domain knowledge. The approach is as follows:

• Molecules are approximated as collections of spheres with fixed radii: H = 1.2; C = 1.6; N = 1.5; O =
1.4; S = 1.95; P = 1.9; F = 1.35; Cl = 1.8; Br = 1.95; I = 2.15.

• A labeling of the features of polar atoms is superimposed on the molecular representation:
polarity, charge, and directional preference (Figure 5.2, subfigures A and B).

• A scoring function is derived that, given a protein and a ligand in some relative alignment, yields
a prediction of the energy of interaction.

• The function is parameterized in terms of the pairwise distances between molecular surfaces.
• The dominant terms are a hydrophobic term that characterizes interactions between nonpolar

atoms and a polar term that captures complementary polar contacts with proper directionality.
• The parameters of the function were derived from empirical binding data and 34 protein-ligand

complexes that were experimentally determined.
• The scoring function is described in Figure 5.2, Subfigure C. The hydrophobic term peaks at

approximately 0.1 unit with a slight surface interpenetration. The hydrophobic term for an ideal hydro-
gen bond peaks at 1.25 units, and a charged interaction (tertiary amine proton (+1.0) to a charged
carboxylate (–0.5)) peaks at about 2.3 units. Note that this scoring function looks nothing like a force
field derived from molecular mechanics.

• Figure 5.2, Subfigure D compares eight docking methods on screening efficiency using thymi-
dine kinase as a docking target. For the test, 10 known ligands and 990 random ligands were used.
Particularly at low false-positive rates (low database coverage), the scoring function approach shows
substantial improvements over the other methods.

5.4.1.4 Computational Analysis and Recognition of Functional and
Structural Sites in Protein Structures40

Structural genomics initiatives are producing a great increase in protein three-dimensional struc-
tures determined by X-ray and nuclear magnetic resonance technologies as well as those predicted by
computational methods. A critical next step is to study the relationships between protein structures and
functions. Studying structures individually entails the danger of identifying idiosyncratic rather than
conserved features and the risk of missing important relationships that would be revealed by statisti-

39See A.N. Jain, “Scoring Noncovalent Protein Ligand Interactions: A Continuous Differentiable Function Tuned to Compute
Binding Affinities,” Journal of Computer-Aided Molecular Design 10(5):427-440, 1996; W. Welch, J. Ruppert, and A.N. Jain, “Ham-
merhead: Fast, Fully Automated Docking of Flexible Ligands to Protein Binding Sites,” Chemistry & Biology 3(6):449-462, 1996; J.
Ruppert, W. Welch, and A.N. Jain, “Automatic Identification and Representation of Protein Binding Sites for Molecular Dock-
ing,” Protein Science 6(3):524-533, 1997; A.N. Jain, “Surflex: Fully Automatic Flexible Molecular Docking Using a Molecular
Similarity-based Search Engine,” Journal of Medicinal Chemistry 46(4):499-511, 2003; A.N. Jain, “Ligand-Based Structural Hypoth-
eses for Virtual Screening.” Journal of Medicinal Chemistry 47(4):947-961, 2004.

40Section 5.4.1.4 is based on material provided by Liping Wei, Nexus Genomics, Inc., and Russ Altman, Stanford University,
personal communication, December 4, 2003.
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cally pooling relevant data. The expected surfeit of protein structures provides an opportunity to de-
velop computational methods for collectively examining multiple biological structures and extracting
key biophysical and biochemical features, as well as methods for automatically recognizing these fea-
tures in new protein structures.

Wei and Altman have developed an automated system known as FEATURE that statistically stud-
ies the important functional and structural sites in protein structures such as active sites, binding sites,
disulfide bonding sites, and so forth. FEATURE collects all known examples of a type of site from the
Protein Data Bank (PDB) as well as a number of control “nonsite” examples. For each of them, FEA-
TURE computes the spatial distributions of a large set of defined biophysical and biochemical proper-
ties spanning multiple levels of details in order to capture conserved features beyond basic amino acid
sequence similarity. It then uses a nonparametric statistical test, the Wilcoxin Rank Sum Test, to find the
features that are characteristic of the sites, in the context of control nonsites. Figure 5.3 shows the
statistical features of calcium binding sites.

By using a Bayesian scoring function that recognizes whether a local region within a three-dimen-
sional structure is likely to be any of the sites and a scanning procedure that searches the whole
structure for the sites, FEATURE can also provide an initial annotation of new protein structures.
FEATURE has been shown to have good sensitivity and specificity in recognizing a diverse set of site
types, including active sites, binding sites, and structural sites and is especially useful when the sites do
not have conserved residues or residue geometry. Figure 5.4 shows the result of searching for ATP
(adenosine triphosphate) binding sites in a protein structure.

FIGURE 5.2 A Computational Approach to Molecular Docking. SOURCE: Courtesy of A.N. Jain, University of
California, San Francisco.
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VOLUMECalcium Model
0 1 2 3 4 5

ATOM-NAME-IS-ANY < > > >
ATOM-NAME-IS-C < < > > >
ATOM-NAME-IS-N < < >
ATOM-NAME-IS-O < > > > > >

AMIDE < < >
AMINE <

CARBONYL < > > > >
RING-SYSTEM <

PEPTIDE < > > >
VDW-VOLUME < < > >

CHARGE > > >
NEG-CHARGE > > >

CHARGE-WITH-HIS > > >
HYDROPHOBICITY < < < <

MOBILITY < > >
SOLVENT-ACCESSIBILITY < >

RESIDUE_NAME_IS_ASN > > > >
RESIDUE_NAME_IS_ASP > > > > >
RESIDUE_NAME_IS_GLU > > > > >
RESIDUE_NAME_IS_GLY > > >
RESIDUE_NAME_IS_ILE >

RESIDUE_NAME_IS_LEU >
RESIDUE_NAME_IS_LYS >
RESIDUE_NAME_IS_SER > >
RESIDUE_NAME_IS_VAL < <
RESIDUE_NAME_IS_HOH >

RESIDUE_CLASS1_IS_HYDROPHOBIC < <
RESIDUE_CLASS1_IS_CHARGED > > > > >

RESIDUE_CLASS1_IS_POLAR < > > >
RESIDUE_CLASS1_IS_UNKNOWN > >
RESIDUE_CLASS2_IS_NONPOLAR < <

RESIDUE_CLASS2_IS_POLAR < > >
RESIDUE_CLASS2_IS_BASIC <

RESIDUE_CLASS2_IS_ACIDIC > > > > >
RESIDUE_CLASS2_IS_UNKNOWN > >

SECONDARY_STRUCTURE1_IS_TURN >
SECONDARY_STRUCTURE1_IS_BEND > > > > >
SECONDARY_STRUCTURE1_IS_COIL > > > > >
SECONDARY_STRUCTURE1_IS_HET > >

SECONDARY_STRUCTURE2_IS_BETA < > >
SECONDARY_STRUCTURE2_IS_COIL > > > > >
SECONDARY_STRUCTURE2_IS_HET > >

FIGURE 5.3 Statistical features of calcium binding sites determined by FEATURE. The volumes in this case corre-
spond to concentrate radial shells 1 Å in thickness around the calcium ion or a control nonsite location. The
column shows properties that are statistically significantly different (at p-value cutoff of 0.01) in at least one
volume between known examples of calcium binding sites and those of control nonsites. A “>” (greater than sign)
indicates that the calcium binding sites have significantly higher value for that property at that volume compared
to control nonsites. A “<” (less than sign) indicates the opposite. An empty box indicates the lack of statistically
significant difference. SOURCE: Courtesy of Liping Wei, Nexus Genomics, Inc., and Russ Altman, Stanford Uni-
versity, personal communication, December 4, 2003.



COMPUTATIONAL MODELING AND SIMULATION AS ENABLERS FOR BIOLOGICAL DISCOVERY 139

5.4.2 Cell Biology and Physiology

5.4.2.1 Cellular Modeling and Simulation Efforts

Cellular simulation requires a theoretical framework for analyzing the interactions of molecular
components, of modules made up of those components, and of systems in which such modules are
linked to carry out a variety of functions. The theoretical goal is to quantitatively organize, analyze, and
interpret complex data on cell biological processes, and experiments provide images, biochemical and
electrophysiological data on the initial concentrations, kinetic rates, and transport properties of the
molecules and cellular structures that are presumed to be the key components of a cellular event.41  A
simulation embeds the relevant rate laws and rate constants for the biochemical transformations being
modeled. Based on these laws and parameters, the model accepts as initial conditions the initial concen-
trations, diffusion coefficients, and locations of all molecules implicated in the transformation, and
generates predictions for the concentration of all molecular species as a function of time and space.
These predictions are compared against experiment, and the differences between prediction and experi-
ment are used to further refine the model. If the system is perturbed by the addition of a ligand,
electrical stimulus, or other experimental intervention, the model should be capable of predicting
changes as well in the relevant spatiotemporal distributions of the molecules involved.

FIGURE 5.4 Results of automatic scanning for ATP binding sites in the structure of casein kinase (PDB ID 1csn)
using WebFEATURE, a freely available, Web-based server of FEATURE. The solid red dots show the prediction of
FEATURE, they correspond correctly with the true location of the ATP binding site, shown as white cloud.
SOURCE: Courtesy of Liping Wei, Nexus Genomics, Inc., and Russ Altman, Stanford University, personal commu-
nication, December 4, 2003.

41A brief introduction to the rationale underlying cellular modeling can be found at the National Resource for Cell Analysis
and Modeling (http://www.nrcam.uchc.edu/applications/applications.html).
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There are many different tools for simulating and analyzing models of cellular systems (Table 5.1).
More general tools, such as Mathematica and MATLAB or other systems that can be used for solving
systems of differential or stochastic-differential equations, can be used to develop simulations, and
because these tools are commonly used by many researchers, their use facilitates the transfer of models
among different researchers. Another approach is to link data gathering and biological information
systems to software that can integrate and predict behavior of interacting components (currently, re-
searchers are far from this goal, but see Box 5.5 and Box 5.6). Finally, several platform-independent
model specification languages are under development that will facilitate greater sharing and
interoperability. For example, SBML,42  Gepasi,43  and CellML44  are specialized systems for biological
and biochemical modeling. Madonna45  is a general-purpose system for solving a variety of equations
(differential equations, integral equations, and so on).

Rice and Stolovitzky describe the task of inferring signaling, metabolic, or gene regulatory path-
ways from experimental data as one of reverse engineering.46  They note that automated, high-through-
put methods that collect species- and tissue-specific datasets in large volume can help to deal with the
risks in generalizing signaling pathways from one organism to another. At the same time, fully detailed
kinetic models of intracellular processes are not generally feasible. Thus, one step is to consider models
that describe network topology (i.e., that identify the interactions between nodes in the system—genes,
proteins, metabolites, and so on). A model with more detail would describe network topology that is
causally directional (i.e., that specifies which entities serve as input to others). Box 5.7 provides more
detail.

TABLE 5.1 Sample Simulation Programs

Name Descriptorsa Web Site

Gepasi/Copasi fkFW http://gepasi.dbs.aber.ac.uk/softw/gepasi.html
BioSim qWMU http://www.molgen.mpg.de/~biosim/BioSim/BioSimHome.html
Jarnac krfbFWS http://members.tripod.co.uk/sauro/Jarnac.htm
MCELL rsU http://www.mcell.cnl.salk.edu/
Virtual Cell ksDFWMU http://www.nrcam.uchc.edu/
E-Cell kWUS http://www.e-cell.org/
Neuron ksFWMUS http://neuron.duke.edu/
Genesis ksUS http://www.bbb.caltech.edu/GENESIS/genesis.html
Plas kfbFW http://correio.cc.fc.ul.pt/~aenf/plas.html
Ingeneue qkFMWUS http://www.ingeneue.org/
DynaFit kfW http://www.biokin.com/dynafit/
Stochsim rS http://www.zoo.cam.ac.uk/comp-cell/StochSim.html
T7 Simulator kUS http://virus.molsci.org/t7/
Molecularizer/Stochastirator krUS http://opnsrcbio.molsci.org/alpha/comps/sim.html

NOTE: All packages have facilities for chemical kinetic simulation of one sort or another.  Some are better designed for metabolic
systems, others for electrochemical systems, and still others for genetic systems.

aThe descriptors are as follows: b, bifurcation analyses and steady-state calculation; f, flux balance or metabolic control and
related analyses; k, deterministic kinetic simulation; q, qualitative simulation; r, stochastic process models; s, spatial processes; D,
database connectivity; F, fitting, sensitivity, and optimization code; M, runs on Macintosh; S, source code available; U, runs on
Linux or Unix; W, runs on windows.

42See http://www.cds.caltech.edu/erato/sbml/.
43See http://www.gepasi.org/.
44See http://www.cellml.org/.
45See http://www.berkeleymadonna.com/.
46 J.J. Rice and G. Stolovitzky, “Making the Most of It: Pathway Reconstruction and Integrative Simulation Using the Data at

Hand,” Biosilico 2:70-77, 2004.
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An example of a cellular simulation environment is E-CELL, an open-source system for modeling
biochemical and genetic processes. Organizationally, E-CELL is an international research project aimed
at developing theoretical and functioning technologies to allow precise “whole cell” simulation; it is
supported by the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

E-CELL simulations allow a user to model hypothetical virtual cells by defining functions of pro-
teins, protein-protein interactions, protein-DNA interactions, regulation of gene expression, and other
features of cellular metabolism.47  Based on reaction rules that are known through experiment and
assumed concentrations of various molecules in various locations, E-CELL numerically integrates dif-
ferential equations implicitly described in these reaction rules, resulting in changes over time in the
concentrations of proteins, protein complexes, and other chemical compounds in the cell.

Developers hope E-CELL will ultimately allow investigators a cheap, fast way to screen drug
candidates, study the effects of mutations or toxins, or simply probe the networks that govern cell
behavior. One application of E-CELL has been to construct a model of a hypothetical cell capable of

Box 5.5
BioSPICE

BioSPICE, the Biological Simulation Program for Intra-Cellular Evaluation, is in essence a modeling framework
that provides users with model components, tools, databases, and infrastructure to develop predictive dynam-
ical models of cellular function. BioSPICE seeks to promote a synergy between experiment and model, in
which model predictions drive experiment and experimental results identify areas in which a given model
needs to be improved, and the intent is that researchers go from data to models to analysis and hypothesis
generation, iteratively refining their understanding of the biological processes.

An important component of BioSPICE is a library of experimentally validated (and hence trusted) model
components that can be used as starting points in larger-scale simulations, as elements from this library are
composed in new ways or adapted to investigate other biological systems. Many biological parts and process-
es are represented as components, including phosphorylization events, chemotaxis, and conserved elements
of various pathways. Also, because BioSPICE is designed as an open-source environment, it is hoped that the
user community itself will make available a repertoire of model components that span a wide range of spatial,
temporal, and functional scales, including those that simulate a single chemical reaction with high fidelity,
those that simulate entire pathways, and those that simulate more abstract higher-order motifs.

BioSPICE tools are intended to enable researchers to use public databases and local resources to formulate a
qualitative description of the cellular process of interest (e.g., models of networks or pathways), to annotate
the links between entities with biochemical interactions, and finally to convert this annotated qualitative
description to a set of equations that can be analyzed and simulated. In addition, BioSPICE provides a number
of simulation engines with the capability to simulate ordinary, stochastic, and partial differential equations
and other tools that support stability and bifurcation analysis and qualitative reasoning that combines proba-
bilistic and temporal logic.

SOURCE: Sri Kumar, Defense Advanced Research Projects Agency, June 30, 2003.

47See http://www.e-cell.org/project/. For a view of the computer science challenges, see also K. Takahashi, K. Yugi, K.
Hashimoto, Y. Yamada, C.J.F. Pickett, and M. Tomita, “Computational Challenges in Cell Simulation: A Software Engineering
Approach,” IEEE Intelligent Systems 17(5):64-71, 2002.
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transcription, translation, energy production, and phospholipid synthesis with only 127 genes. Most of
these genes were taken from Mycoplasma genitalium, the organism with the smallest known chromo-
some (the complete genome sequence is 580 kilobases).48  E-CELL has also been used to construct a
computer model of the human erythrocyte,49  to estimate a gene regulatory network and signaling

Box 5.6
Cytoscape

A variety of computer-aided models has been developed to simulate biological networks, typically focusing
on specific cellular processes or single pathways.1  Cytoscape is a modeling environment particularly suited
to the analysis of global data on network interactions (from high-throughput screens for protein-protein, pro-
tein-DNA, and gene interactions) and on network states (including data on gene expression, protein abun-
dance, and metabolite concentrations.) The Java-based, open-source software uses plug-ins to incorporate
analyses of individual processes and pathways.2

A model in Cytoscape is organized as a network graph, with molecular species represented as nodes and
interactions represented as edges between nodes. Nodes and edges are mapped to specific data values called
attributes that can be text strings, discrete or continuous numbers, URLs, or lists, either loaded from a data
repository or generated dynamically. Layered onto attributes are annotations, which represent a hierarchical
classification of progressively more specific descriptions (such as functions) of groups of nodes and edges. It is
possible to have many levels of annotation active simultaneously, each displayed as a different attribute of a
node or edge. To visualize the network, Cytoscape supports several layout algorithms that fix the relative
locations of specific nodes and edges in the graphical window. An attribute-to-visual mapping facility allows
attributes to determine the appearance (color, shape, size) of their associated nodes and edges. Graph selec-
tion and filtering reduces the complexity of the network by selectively displaying subsets of nodes and edges
according to a variety of criteria.

Cytoscape’s plug-in extensibility addresses the challenge of bridging high-level information (relationships among
network components) with lower-level information (reaction rates, binding constants) of specific processes. A
plug-in that organizes the network layout according to putative functional attributes of genes was used to study
energy transduction pathways in Halobacterium.3 Another plug-in allows Cytoscape to simulate stochastic
SBML-biochemical models.4 The authors hope a community will further develop and enhance Cytoscape.

1A. Gilman and A.P. Arkin, “Genetic ‘Code’: Representations and Dynamical Models of Genetic Components and Networks,” Annual
Review of Genomics and Human Genetics 3:341-369, 2002

2P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, et al., “Integrated Models of Biomolecular Interaction
Networks,” Genome Research 13:2498-2504, 2003.

3N.S. Baliga, M. Pan, Y.A. Goo, E.C. Yi, D.R. Goodlett, K. Dimitrov, P. Shannon, et al., “Coordinate Regulation of Eenergy Transduction
Modules in Halobacterium species Analyzed by a Global Systems Approach,” Proceedings of the National Academy of Sciences
99(23):14913-14918, 2002.

4M. Hucka, A. Finney, H.M. Sauro, H. Bolouri, J. Doyle, and H. Kitano, “The ERATO Systems Biology Workbench: Enabling Interaction
and Exchange Between Software Tools for Computational Biology,” Pacific Symposium in Biocomputing, 450-461, 2002.

SOURCE: Adapted from P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin et al., “Cytoscape: A Software
Environment for Integrated Models of Biomolecular Interaction Networks,” Genome Research 13(11):2498-2504, 2003.

48M. Tomita, K. Hashimoto, K. Takahashi, Y. Matsuzaki, R. Matsushima, K. Saito, K. Yugi, et al., “E-CELL Project Overview:
Towards Integrative Simulation of Cellular Processes,” Genome Informatics 9:242-243, 1998, available at http://giw.ims.u-
tokyo.ac.jp/giw98/cdrom/Poster-pdf/poster02.pdf.

49M. Tomita et al., “In Silico Analysis of Human Erythrocyte Using E-Cell System,” poster session, The Future of Biology in the
21st Century: 2nd International Conference on Systems Biology, California Institute of Technology, Pasadena, November 4-7,
2001, available at http://www.icsb2001.org/Posters/032_kinoshita.pdf.
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pathway involved in the circadian rhythm of Synechococcus sp. PCC 7942,50  and to model mitochondrial
energy metabolism and metabolic pathways in rice.51

Another cellular simulation environment is the Virtual Cell, developed at the University of Connecti-
cut Health Center.52  The Virtual Cell is a tool for experimentalists and theoreticians for computationally
testing hypotheses and models. To address a particular question, these mechanisms (chemical kinetics,
membrane fluxes and reactions, ionic currents, and diffusion) are combined with a specific set of experi-
mental conditions (geometry, spatial scale, time scale, stimuli) and applicable conservation laws to specify

Box 5.7
Pathway Reconstruction: A Systems Approach

On Topology.

In this level, we are only concerned with identifying the interaction between nodes (genes, proteins, metabolites,
etc.) in the system. The goal is the generation of a diagram of non-directional connections between all interacting
nodes. For example, many have sought to develop large-scale maps of protein–protein interactions derived from
various sources. Two-hybrid studies have produced genome-wide interaction maps for E. coli bacteriophage T7,
yeast, Drosophila, and C. elegans. Although this approach can be comprehensive in regard to being genome wide,
many interactions are not reproducible (a potential source of false negatives) and putative interactions occur be-
tween unlikely protein combinations (a potential source of false positives). . . . Another approach to constructing
large-scale connection maps is by mining databases. Specific databases of protein interactions are being developed,
the largest of which are DIP and BIND. These databases combine data from many high-throughput experiments
along with data from other sources, such as published literature. . . . Along other lines, investigators have attempted
to identify topological links by analyzing the dynamic behavior of networks. Pioneering work in this area shows that
metabolic network topologies can be derived from correlation of time-series measurements of species concentra-
tions. The method is further refined to better identify connections in non-linear systems using mutual information
instead of correlation. In another method, pair-wise correlation of gene expression data is used to predict functional
connections that could then be combined into “relevance networks” of linked genes. Other methods may seek to use
some combination of data sources, although this may not be completely straightforward.

On Inferring Qualitative Connections.

In this level, we include not only associations between cellular entities but also the causal relations of such associ-
ations, such as which entities serve as input to others. . . . Researchers have proposed methods that infer connectiv-
ities from the estimations of the Jacobian matrix for metabolic, signaling, and genetic networks. Ross and co-workers
have proposed a method based on propagated perturbations of chemical species that can reconstruct causal se-
quences of reactions from synthetic and experimental data. To reconstruct gene regulatory systems, methods include
fuzzy logic analysis of facilitator/repressor groups in the yeast cell cycle and reconstruction of binary networks.
However, the wide application of such methods is often limited because the continuous nature of many biological
systems prevents easy abstractions into coarser signals. Recently, there has been considerable work using Bayesian
network inference. Examples include inferring gene regulation using gene expression data from the yeast cell cycle
or using data from synthetic gene networks.

SOURCE: Reprinted by permission from J.J. Rice and G. Stolovitzky, “Making the Most of It: Pathway Reconstruction and Integrative
Simulation Using the Data at Hand,” Biosilico 2(2):70-77. Copyright 2004 Elsevier. (References omitted.)

50F. Miyoshi et al., “Estimation of Genetic Networks of the Circadian Rhythm in Cyanobacterium Using the E-CELL system,”
poster session, presented at US-Japan Joint Workshop on Systems Biology of Useful Microorganisms, September 6-18, 2002, Keio
University, Yamagata, Japan, available at http://nedo-doe.jtbcom.co.jp/abstracts/35.pdf.

51E. Wang et al., “e-Rice Project: Reconstructing Plant Cell Metabolism Using E-CELL System,” poster session presented at
Systems Biology: The Logic of Life—3rd International Conference on Systems Biology, December 13-15, 2002, Karolinska
Institutet, Stockholm, available at http://www.ki.se/icsb2002/pdf/ICSB_222.pdf.

52L.M. Loew and J.C. Schaff, “The Virtual Cell: A Software Environment for Computational Cell Biology,” Trends in Biotechnol-
ogy 19(10):401-406, 2001.
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a concrete system of differential and algebraic equations. This experimental geometry may assume well-
mixed compartments or a one-, two-, or three-dimensional spatial representation (e.g., experimental im-
ages from a microscope). Models are constructed from biochemical and electrophysiological data mapped
to appropriate subcellular locations in images obtained from a microscope. A variety of modeling approxi-
mations are available including pseudo-steady state in time (infinite kinetic rates) or space (infinite diffu-
sion or conductivity). In the case of spatial simulations, the results are mapped back to experimental
images and can be analyzed by applying the arsenal of image-processing tools that is familiar to a cell
biologist. Section 5.4.2.4 describes a study undertaken within the Virtual Cell framework.

Simulation models can be useful for many purposes. One important use is to facilitate an understand-
ing of what design properties of an intracellular network are necessary for its function. For example, von
Dassow et al.53  used a simulation model of the gap and pair-rule gene network in Drosophila melanogaster
to show that the structure of the network is sufficient to explain a great deal of the observed cellular
patterning. In addition, they showed that the network behavior was robust to parameter variation upon
the addition of hypothetical (but reasonable) elements to the known network. Thus, simulations can also
be used to formally propose and justify new hypothetical mechanisms and predict new network elements.

Another use of simulation models is in exploring the nature of control in networks. An example of
exploring network control with simulation is the work of Chen et al..54  in elucidating the control of different
phases of mitosis and explaining the impact of 50 different mutants on cellular decisions related to mitosis.

Simulations have also been used to model metabolic pathways. For example, Edwards and Palsson
developed a constraint-based genome-scale simulation of Escherichia coli metabolism (Box 5.8). By ap-
plying successive constraints (stoichiometric, thermodynamic, and enzyme capacity constraints) to the
metabolic network, it is possible to impose limits on cellular, biochemical, and systemic functions,
thereby identifying all allowable solutions (i.e., those that do not violate the applicable constraints).
Compared to the detailed theory-based models, such an approach has the major advantage that it does
not require knowledge of the kinetics involved (since it is concerned only with steady-state function).
(On the other hand, it is impossible to implement without genome-scale knowledge, because only
genome-scale knowledge can bound the system in question.)  Within the space of allowable solutions, a
particular solution corresponds to the maximization of some selected function, such as cellular growth
or a response to some environmental change. A more robust model accounting for a larger number of
pathways is also described in Box 5.8.

The Edwards and Palsson model has been used to predict the evolution of E. coli metabolism under
a variety of environmental conditions. In the words of Ibarra et al., “When placed under growth
selection pressure, the growth rate of E. coli on glycerol reproducibly evolved over 40 days, or about 700
generations, from a sub-optimal value to the optimal growth rate predicted from a whole-cell in silico
model. These results open the possibility of using adaptive evolution of entire metabolic networks to
realize metabolic states that have been determined a priori based on in silico analysis.”55

Simulation models can also be used to test design ideas for engineering networks in cells. For
example, very simple models have been used to provide insight into a genetic oscillator and a switch in
E. coli.56  Models have also been used to test designs for the control of cellular networks, as illustrated by

53G. Von Dassow, E. Meir, E.M. Munro, and G.M. Odell, “The Segment Polarity Network Is a Robust Developmental Module,”
Nature 406(6792):188-192, 2000.

54K.C. Chen, A. Csikasz-Nagy, B. Gyorffy, J. Val, B. Novak, and J.J. Tyson, “Kinetic Analysis of a Molecular Model of the
Budding Yeast Cell Cycle,” Molecular Biology of the Cell 11(1):369-391, 2000.

55R.U. Ibarra, J.S. Edwards, and B.O. Palsson, “Escherichia coli K-12 Undergoes Adaptive Evolution to Achieve in Silico Pre-
dicted Optimal Growth,” Nature 420(6912):186-189, 2002.

56M.B. Elowitz and S. Leibler, “A Synthetic Oscillatory Network of Transcriptional Regulators,” Nature 403(6767):335-338,
2000; T.S. Gardner, C.R. Cantor, and J.J. Collins, “Construction of a Genetic Toggle Switch in Escherichia coli,” Nature
403(6767):339-342, 2000.
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Endy and Yin in using their T7 model to propose a pharmaceutical strategy for preventing both T7
propagation and the development of drug resistance through mutation.57

Given observed cell behavior, simulation models can be used to suggest the necessity of a given
regulatory motif or the sufficiency of known interactions to produce the phenomenon. For example, Qi
et al. demonstrate the sufficiency of membrane energetics, protein diffusion, and receptor-binding
kinetics to generate a particular dynamic pattern of protein location at the synapse between two im-
mune cells.58

The following sections describe several simulation studies in more detail.

Box 5.8
Escherichia coli Constraint-based Models

A. In Silico Model1

The Escherichia coli MG1655 genome has been completely sequenced. The annotated sequence, biochemical infor-
mation, and other information were used to reconstruct the E. coli metabolic map. The stoichiometric coefficients for
each metabolic enzyme in the E. coli metabolic map were assembled to construct a genome-specific stoichiometric
matrix. The E. coli stoichiometric matrix was used to define the system’s characteristics and the capabilities of E. coli
metabolism. The effects of gene deletions in the central metabolic pathways on the ability of the in silico metabolic
network to support growth were assessed, and the in silico predictions were compared with experimental observa-
tions. It was shown that based on stoichiometric and capacity constraints the in-silico analysis was able to qualita-
tively predict the growth potential of mutant strains in 86% of the cases examined. Herein, it is demonstrated that the
synthesis of in silico metabolic genotypes based on genomic, biochemical, and strain-specific information is possi-
ble, and that systems analysis methods are available to analyze and interpret the metabolic phenotype.

B. Genome-scale Model2

An expanded genome-scale metabolic model of E. coli (iJR904 GSM/GPR) has been reconstructed which includes
904 genes and 931 unique biochemical reactions. The reactions in the expanded model are both elementally and
charge balanced. Network gap analysis led to putative assignments for 55 open reading frames (ORFs). Gene to
protein to reaction associations (GPR) are now directly included in the model. Comparisons between predictions
made by iJR904 and iJE660a models show that they are generally similar but differ under certain circumstances.
Analysis of genome-scale proton balancing shows how the flux of protons into and out of the medium is important
for maximizing cellular growth. . . . E. coli iJR904 has improved capabilities over iJE660a [a model that accounted for
660 genes and 627 unique biochemical reactions and was itself a slight modification of the original model described
in the above paragraph]. iJR904 is a more complete and chemically accurate description of E. coli metabolism than
iJE660a. Perhaps most importantly, iJR904 can be used for analyzing and integrating the diverse datasets. iJR904 will
help to outline the genotype-phenotype relationship for E. coli K-12, as it can account for genomic, transcriptomic,
proteomic and fluxomic data simultaneously.

1Reprinted from J.S. Edwards and B.O. Palsson, “The Escherichia coli MG1655 in Silico Metabolic Genotype: Its Definition, Characteristics, and
Capabilities,” Proceedings of the National Academy of Sciences 97(10): 5528-5533, 2000. Copyright 2000 National Academy of Sciences.

2J.L. Reed, T.D. Vo, C.H. Schilling, and B.O. Palsson, “An Expanded Genome-scale Model of Escherichia coli K-12 (iJR904 GSM/GPR),”
Genome Biology 4(9): Article R54, 2003, available at http://genomebiology.com/2003/4/9/R54. Reprinted by permission of the authors.

57D. Endy and J. Yin, “Toward Antiviral Strategies That Resist Viral Escape,” Antimicrobial Agents and Chemotherapy 44(4):1097-
1099, 2000.

58S.Y. Qi, J.T. Groves, and A.K. Chakraborty, “Synaptic Pattern Formation During Cellular Recognition,” Proceedings of the
National Academy of Sciences 98(12):6548-6553, 2001.
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5.4.2.2 Cell Cycle Regulation

Biological growth and reproduction depend ultimately on the cycle of DNA synthesis and physical
separation of the replicate DNA molecules within individual cells. In eukaryotes, these processes are
triggered by cyclin-dependent protein kinases (CDKs). In fission yeast, CDK activity (cdc2 = kinase
subunit, cdc13 = cyclin subunit) is regulated by a network of protein interactions (Figure 5.5), including
cyclin synthesis and degradation, phosphorylation of cdc2, and binding to an inhibitor.

A network of such complexity, with multiple feedback loops, cannot be understood thoroughly by
casual intuition. Instead, the network is converted into a set of nonlinear differential equations, and the
physiological implications of these equations are studied.59  Numerical simulation of the equations
(Figure 5.6) provides complete time courses of every component and can be interpreted in terms of
observable events in the cell cycle. Simulations can be run, not only of wild-type cells but also of dozens
of mutants constructed by deleting or overexpressing each component singly or in multiple combina-
tions. From the observed phenotypes of these mutants it is possible to reverse-engineer the regulatory
network and the set of kinetic constants associated with the component reactions.

FIGURE 5.5 The cell-cycle control system in fission yeast. This system can be divided into three modules, which
regulate the transitions from G1 into S phase, from G2 into M phase, and exit from mitosis. SOURCE: J.J. Tyson, K.
Chen, and B. Novak, “Network Dynamics and Cell Physiology,” Nature Reviews of Molecular Cell Biology 2(12):908-
916, 2001. Figure and caption reproduced with permission from Nature Reviews of Molecular Cell Biology. Copyright
2001 Macmillan Magazines Ltd.

59J.J. Tyson, K. Chen, and B. Novak, “Network Dynamics and Cell Physiology,” Nature Reviews: Molecular Cell Biology 2(12):908-
916, 2001; J.J. Tyson, A. Csikasz-Nagy, and B. Novak, “The Dynamics of Cell Cycle Regulation,” BioEssays 24(12):1095-1109, 2002.
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For understanding the dynamics of molecular regulatory systems, bifurcation theory is a powerful
complement to numerical simulation. The bifurcation diagram in Figure 5.7 presents recurrent solutions
(steady states and limit cycle oscillations) of the differential equations as functions of cell size. The
control system has three characteristic steady states: low cdc2 activity (G1 = pre-replication), medium
cdc2 activity (S/G2 = replication and post-replication), and high cdc2 activity (M = separation of repli-
cated DNA molecules). G1 and S/G2 are stable steady states; M is unstable because of a negative
feedback loop as shown in Figure 5.5 (cdc2-cdc13 activates Slp1, which degrades cdc13).

When the time courses of size and cdc2 activity from Figure 5.6 are superimposed on the bifurcation
diagram (curve labeled “size”), one sees how progress through the cell cycle is governed by the bifurca-
tions that turn stable steady states into unstable steady states and/or stable oscillations. A mutation
changes a specific rate constant, which changes the locations of the bifurcation points in Figure 5.7,
which changes how cells progress through (or halt in) the cell cycle. By this route one can trace the
dynamical consequences of genetic information all the way to observable cell behavior.

FIGURE 5.6 Simulated time courses of cdc2 and related proteins during the cell cycle of fission yeast. Numerical
integration of the full set of differential equations that describe the wiring diagram in Figure 5.5 yields these time
courses. Time is expressed in minutes; all other variables are given in arbitrary units. “Size” refers to the number of
ribosomes per nucleus. Notice the brief G1 phase, when ste9 is active and rum1 is abundant. After a long S/G2 phase,
during which cdc2 is tyrosine phosphorylated, the cell enters M phase, when cdc25 removes the inhibitory phosphate
group. After some delay, slp1 activates and degrades cdc13. As cdc2–cdc13 activity falls, the cell exits mitosis. Size
decreases twofold at nuclear division. SOURCE: J.J. Tyson, K. Chen, and B. Novak, “Network Dynamics and Cell
Physiology,” Nature Reviews of Molecular Cell Biology 2(12):908-916, 2001. Figure and caption reproduced with permis-
sion from Nature Reviews of Molecular Cell Biology. Copyright 2001 Macmillan Magazines Ltd.
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5.4.2.3 A Computational Model to Determine the Effects of SNPs in
Human Pathophysiology of Red Blood Cells

The completion of the Human Genome Project has led to the construction of single nucleotide
polymorphism (SNP) maps. Single nucleotide polymorphisms are common DNA sequence variations
among individuals. A result of the construction of SNP maps is to determine the effects of SNPs on the
development of disease(s) since sequence variations can lead to altered biological function or disease.

Currently, it is difficult to determine the causal relationship between the variations in sequence,
SNPs, and the physiological function. One way to analyze this relationship is to create computational
models or simulations of biological processes. Since erythrocyte (red blood cell) metabolism has been
studied extensively over the years and many SNPs have been characterized, Jamshidi et al. used this
information to build their computational models.60

Two important metabolic enzymes, glucose-6-phosphate dehydrogenase (G6PD) and pyruvate ki-
nase (PK), were studied for alterations in their kinetic properties in an in silico model to calculate the
overall effect of SNPs on red blood cell function. Defects in these enzymes cause hemolytic anemia.

FIGURE 5.7 Bifurcation diagram for the full cell-cycle control network. . . . [T]he full diagram is not a simple sum of the
bifurcation diagrams of its modules. In particular, oscillations around the M state are greatly modified in the composite
control system. Superimposed on the bifurcation diagram is a “cell-cycle orbit” (line on the right with arrows): from
the time courses in Figure 5.6, we plot size on the abscissa and cdc2–cdc13 activity on the ordinate for representative
times between birth and division. Notice that, at small cell size, all three modules support stable steady states. Notice
how the cell-cycle orbit follows the attractors of the control system. SOURCE: J.J. Tyson, K. Chen and B. Novak,
“Network Dynamics and Cell Physiology,” Nature Reviews Molecular Cell Biology 2(12):908-916, 2001. Figure and caption,
reproduced with permission from Nature Reviews Molecular Cell Biology. Copyright 2001 Macmillan Magazines Ltd.

60N. Jamshidi, S.J. Wiback, and B.O. Palsson, “In Silico Model-driven Assessment of the Effects of Single Nucleotide Polymor-
phisms (SNPs) on Human Red Blood Cell Metabolism,” Genome Research 12(11):1687-1692, 2002.
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Clinical data taken from the published literature were used for the measured values of the kinetic
parameters. These values were then used in model simulations to determine whether a direct link could
be established between the SNP and the disease (anemia).

The computational modeling revealed two results. For the G6PD and PK variants analyzed, there
appeared to be no clear relationship between their kinetic properties as a function of sequence variation
or SNP. However, upon assessment of overall biological function, a correlation was found between the
sequence variation of G6PD and the severity of the clinical disease. Thus, in silico modeling of biological
processes may aid in analysis and prediction of SNPs and pathophysiological conditions.

5.4.2.4 Spatial Inhomogeneities in Cellular Development

Simulation models can be used to provide insight into the significance of spatial inhomogeneities.
For example, the interior of living cells does not resemble at all a uniform aqueous solution of dissolved
chemicals, and yet this is the implicit assumption underlying many views of the cell. This assumption
serves traditional biochemistry and molecular biology reasonably well, but research increasingly dem-
onstrates that the physical locations of specific molecules are crucial. Multiprotein complexes act as
machines for internal movements or as integrated circuits in signaling. Messenger RNA molecules are
transported in a highly directed fashion to specific regions of the cell (in nerve axons, for example). Cells
adopt highly complex shapes and undergo complex movements thanks to the matrix of protein fila-
ments and associated proteins within their cytoplasm.

5.4.2.4.1 Unraveling the Physical Basis of Microtubule Structure and Stability Microtubules are cylin-
drical polymers found in every eukaryotic cell. Microtubles play a role in cellular architecture and as
molecular train tracks used to transport everything from chromosomes to drug molecules. An under-
standing of microtubule structure and function is key not just to unraveling fundamental mechanisms
of the cell, but also to opening the way to the discovery of new antiparasitic and anticancer drugs.

Until now, researchers have known that the microtubules, constructed of units called protofilaments
in a hollow, helical arrangement, are rigid but not static, and undergo periods of growth and sudden
collapse. Yet the mechanism for this construction-destruction had eluded researchers.

Over the past several years, McCammon and his colleagues have pioneered the use of a combina-
tion of an atomically detailed model for a microtubule and large-scale computations using the adaptive
Poisson-Boltzmann Solver to create a high-resolution, 1.25-million-atom map of the electrostatic inter-
actions within the microtubule.61

More recently, David Sept and Nathan Baker of Washington University and McCammon used the
same technique to successfully predict the helicity of the tubule with a striking correspondence to
experimental observation.62  Based on the lateral interactions between protofilaments, they determined
that the microtubule prefers to be in a configuration in which the protofilaments assemble with a seam
at each turn, rather than spiraling smoothly upward with alpha and beta monomers wrapping the
microtubule as if it were a barber’s pole. At the end of each turn, a chain of alphas is trailed by a chain
of betas, then after that turn, a chain of alphas, and so on. It is as if the red and white stripes on the
barber’s pole traded places with every twist (Figure 5.8).

61N.A. Baker, D. Sept, S. Joseph, M.J. Holst, and J.A. McCammon, “Electrostatics of Nanosystems: Application to Microtubules
and the Ribosome,” Proceedings of the National Academy of Sciences 98(18):10037-10041, 2001.

62D. Sept, N.A. Baker, and J.A. McCammon, “The Physical Basis of Microtubule Structure and Stability,” Protein Science
12(10):2257-2261, 2003.



150 CATALYZING INQUIRY

5.4.2.4.2 The Movement of Listeria Bacteria Alberts and Odell have developed a computational model
of Listera monocytogenes based on an explicit simulation of a large number of monomer-scale biochemi-
cal and mechanical interactions,63 representing all protein-protein binding interactions with on-rate and
off-rate kinetic equations. These equations characterize individual actin filaments: the bulk properties of
the actin “gel” arise from the contributions of the many individual filaments of the actin network; and
the growth of any particular filament depends on that filament’s precise location, orientation, and
biochemical state, all of which change through time. Mechanical interactions, which resolve collisions
and accommodate the stretching of protein-protein linkages, follow Newton’s laws.

The model is based on a large set of differential equations that determine how the relevant state
variables change with time. These equations are solved numerically, taking into account the fact that
discontinuities in time occur frequently as objects suddenly collide and as objects suddenly spring into
existence or disappear (due to new filament nucleation and depolymerization). The model accommo-

FIGURE 5.8 The binding free energy between two protofilaments as a function of the subunit rise between adja-
cent dimmers. Sept et al. used electrostatic calculations to determine the binding energy between two protofila-
ments as a function of the subunit rise between adjacent dimers. Viewed from the growing (+) end of the tubule,
the graph demonstrates the most favorable configuration at various points during assembly. SOURCE: Reprinted
by permission from D. Sept, N.A. Baker, and J.A. McCammon, “The Physical Basis of Microtubule Structure and
Stability,” Protein Science 12:2257-2261, 2003. Copyright 2003 by the Protein Society.

63J.B. Alberts and G.M. Odell, “In Silico Reconstitution of Listeria Propulsion Exhibits Nano-Saltation,” PLoS Biology 2(12):e412,
2004, available at http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=532387.
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dates arbitrary geometries, explicit stochastic input, and specific small-scale events. Because the model
is built from the ground up, it can predict emergent behavior that would not be apparent from intuition
or qualitative description of the behavior of individual parts. On the other hand, the simulation requires
multiple runs of its stochastic, individual molecule-based model, and parametric relationships emerge
not from closed-form equations that demonstrate qualitative functional dependencies but from en-
sembles of many repeated simulations.

The trajectories generated by this model of L. monocytogenes motility display repeated runs and
pauses that closely resemble the actual nanoscale measurements of bacterial motion.64  Further analysis
of the simulation state at the beginning and ends of simulated pauses indicate that there is no character-
istic step-size or pause duration in these simulated trajectories and that pauses can be caused both by
correlated Brownian motion and by synchronously strained sets of ActA-actin filament mechanical
links.

5.4.2.4.3 Morphological Control of Spatiotemporal Patterns of Intracellular Signaling Fink and
Slepchenko studied calcium waves evoked by activation of the bradykinin receptor in the plasma
membrane of a neuronal cell.65  The neuromodulator bradykinin applied to the cells produced a calcium
wave that starts in the neurite and spreads to the soma and growth cones. The calcium wave was
monitored with digital microscope imaging of a fluorescent calcium indicator. The hypothesis was that
interaction of bradykinin with its receptor on the plasma membrane activated production of inositol-
1,4,5-trisphosphate (InsP3) that diffused to its receptor on the endoplasmic reticulum, leading to calcium
release.

Using the Virtual Cell software environment, they assembled a simulation model of this phenom-
enon.66  The model contained details of the relevant receptor distributions (via immunofluorescence)
within the cell geometry, the kinetics of InsP3 production (via biochemical analysis of InsP3 in cell
populations and photorelease of caged InsP3 in individual cells), the transport of calcium through the
InsP3 receptor calcium channel and the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA)
pump (from literature studies of single-channel kinetics and radioligand flux), and calcium buffering by
both endogenous proteins and the fluorescent indicator (from confocal measurements of indicator
concentrations).

The mathematical equations generated by this combination of molecular distributions and reaction
and membrane transport kinetics were then solved to produce a simulation of the spatiotemporal pattern
of calcium that could be directly compared to the experiment. The characteristic calcium dynamics re-
quires rapid, high-amplitude production of [InsP3]cyt in the neurite. This requisite InsP3 spatiotemporal
profile is provided, in turn, as an intrinsic consequence of the cell’s morphology, demonstrating how
geometry can locally and dramatically intensify cytosolic signals that originate at the plasma membrane.
In addition, the model predicts and experiments confirm that stimulation of just the neurite, but not the
soma or growth cone, is sufficient to generate a calcium response throughout the cell.

64S.C. Kuo and J.L. McGrath, “Steps and Fluctuations of Listeria Monocytogenes During Actin-based Motility,” Nature
407(6807):1026-1029, 2000; J. McGrath, N. Eungdamrong, C. Fisher, F. Peng, L. Mahadevan, T.J. Mitchison, and S.C. Kuo, “The
Force-Velocity Relationship for the Actin-based Motility of Listeria Moncytogenes,” Current Biology 13(4):329-332, 2003. (Both
cited in Alberts and Odell, 2004.)

65C.C. Fink, B. Slepchenko, I.I. Moraru, J. Schaff, J. Watras, and L.M. Loew, “Morphological Control of Inositol-1,4,5-
Trisphosphate-dependent Signals.” Journal of Cell Biology 147(5):929-935, 1999; C.C. Fink, B. Slepchenko, I.I. Moraru, J. Watras,
J.C. Schaff, and L.M. Loew, “An Image-based Model of Calcium Waves in Differentiated Neuroblastoma Cells,” Biophysical
Journal 79(1):163-183, 2000.

66B.M. Slepchenko, J.C. Schaff, I. Macara, and L.M. Loew, “Quantitative Cell Biology with the Virtual Cell,” Trends in Cell
Biology 13(11):570-576, 2003.
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67For purposes of the discussion in this subsection (Section 5.4.3.1), regulation refers to cis-regulation.
68C.H. Yuh, H. Bolouri, and E.H. Davidson, “Genomic Cis-regulatory Logic: Experimental and Computational Analysis of a

Sea Urchin Gene,” Science 128(5):617-629, 1998. Some of this discussion is also adapted from commentary on this article: G.A.
Wray, “Promoter Logic,” Science 279(5358):1871-1872, 1998.

69In this context, a multifunctional organization of the regulatory system means that the protein associated with the endo16
gene is differentially expressed in various cells in the sea urchin.

5.4.3 Genetic Regulation

The problem of genetic regulation—how and under what circumstances and the extent to which
genes are expressed as proteins—is a central problem of modern biology. The issue originates in an
apparent paradox—every cell in a complex organism contains the same DNA sequences, and yet there
are many cell types in such organisms (blood cells, skin cells, and so on). In particular, the proteins that
comprise any given cell type are different from those of other cell types, even though the genomic
information is the same in both. Nor is genomic information the whole story in development—cells also
respond to their environment, and external signals coming into a cell from neighboring cells influence
which proteins the cell makes.

Genetic regulation is an extraordinarily complex problem. Molecular biologists distinguish be-
tween cis-regulation and trans-regulation. Cis-regulatory elements for a given gene are segments of the
genome that are located in the vicinity of the structural portion of a gene and regulate the expression of
the gene. Trans-regulatory elements for a given gene refer to proteins not structurally associated with a
gene that nevertheless regulate its expression. The sections below provide examples of several con-
structs that help shed some light on both kinds of regulation.

5.4.3.1 Cis-regulation of Transcription Activity as Process Control Computing

It has been known for some time that the genome contains both genes and cis-regulatory ele-
ments.67  The presence or absence of particular combinations of these regulatory elements determines
the extent to which specific genes are expressed (i.e., transcribed into specific proteins). In pioneering
work undertaken by Davidson et al.,68  it was shown that cis-regulation could—in the case of a specific
gene—be viewed as a logical process analogous to a computer program that connected various inputs to
a single output determining the precise level of transcription for that gene.

In particular, Davidson and his colleagues developed a high-level computer simulation of the cis-
regulatory system governing the expression of the endo16 gene in the sea urchin (endo16 is a gut-specific
gene of the sea urchin embryo). In this context, the term “high-level” means a highly abstracted repre-
sentation, consisting at its core of 18 lines of code. This simulation enabled them to make predictions
about the effect of specific manipulations of the various regulatory factors on endo16 transcription levels
that could be tested against experiment.

Some of the inputs to the simulation were binary values. The value 1 indicated that a binding site
was both present and productively occupied by the appropriate cis-regulatory factor. A 0 indicated that
the site was mutationally destroyed or inactive because its factor was not present or was inactive. The
other inputs to the simulation were continuous and varied with time, and represented outputs (protein
concentrations) in other parts of the system. The output of this process in some cases was a continuous
time-varying variable that regulated the extent to which the specific gene in question was transcribed.

Davidson et al. were able to confirm the predictions made by their computational model, conclud-
ing that all of the regulatory functions in question (and the resulting system properties) were encoded in
the DNA sequence, and that the regulatory system described is capable of processing complex informa-
tional inputs and hence indicates the presence of a multifunctional organization of the endo16 cis-
regulatory system.69
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The computational model undoubtedly provides a compact representation of the relationships
between different inputs and different outputs.70  Perhaps a more interesting question, however, is the
extent to which it is meaningful to ascribe a computational function to the biochemical substrate under-
lying the regulatory system. Davidson et al. argue that the DNA sequence in this case specifies “what is
essentially a hard-wired, analog computational device,” resulting in system properties that are “all
explicitly specified in the genomic DNA sequence.”71

It is highly unlikely that the precise computational structure of endo16’s regulatory system will
generalize to the regulatory systems of other genes. From the perspective of the biologist, the reason is
clear—organisms are not designed as general-purpose devices. Indeed, the evolutionary process virtu-
ally guarantees that individualized solutions and architectures will be abundant, because specific adap-
tations are the rule of the day. Nevertheless, insight into the computational behavior of the endo16 cis-
regulatory system provides a new way of looking at biological behavior.

Can the regulatory systems of some other genes be cast in similar computational terms? If and when
future work demonstrates that such casting is possible, it will become increasingly meaningful to view
the genome as thousands of simple computational devices operating in tandem. Davidson’s work
suggests the possibility that a class of regulatory mechanisms, complex though they might be with
respect to their behavior, may be governed by what are in essence hard-wired devices whose essential
functionality can be understood in computational terms through a logic of operation that is in fact
relatively simple at its core. Prior to Davidson’s work and despite extensive research, the literature had
not revealed any apparent regularity in the organization of regulatory elements or in the ways in which
they interact to regulate gene expression.

Indeed, while many promoters appear either to have a simpler organization or to operate less
logically than that of endo16, few promoters have been examined with the many precise quantitative
assays that were carried out by Davidson et al., and nonquantitative assays would have completely
missed most of the functions that the majority of the regulatory system’s elements encode.72  So, it is at
this point an open question whether this computational view has applicability beyond the specific case
of endo16.

 5.4.3.2 Genetic Regulatory Networks as Finite-state Automata

Trans-regulation (as contrasted to cis-regulation) is based on the notion that some genes can have
regulatory effects on others.73  In reality, the network of connections between genes that regulate and
genes that are regulated is highly complex. In an attempt to gain insight into genetic regulatory net-
works from a gross oversimplification, Kaufmann proposed that actual genetic regulatory networks
might be modeled as randomly connected Boolean networks.74

Kaufmann’s model made several simplifying assumptions:

70E.F. Keller, Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines, Harvard University
Press, Cambridge, MA, 2002, p. 241.

71This is not to argue that DNA sequence alone is responsible for the specification of system properties. Epigenetic control
mechanisms also influence system properties as do environmental conditions and cell state that are not specified in DNA. An
analogy might be that although a memory dump of a computer specifies the state of the computer, many contingent activities
may affect the actual execution path. For example, the behavior (and timing) of specific input-output activities are likely to be
relevant.

72G.A. Wray, “Promoter Logic,” Science 279(5358):1871-1872, 1998.
73For purposes of the discussion in this subsection (Section 5.4.3.2), regulation refers to trans-regulation.
74Much of this work is due to the pioneering work of Stuart Kauffman. See for example, S.A. Kauffman, The Origins of Order:

Self-Organization and Selection in Evolution, Oxford University Press, New York, 1993. An alternative discussion of this material
can be found at http://www.smi.stanford.edu/projects/helix/bmi214/ (May 13); lecture notes of Russell Altman.
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• The total number of genes involved is N, a number of order 30,000.
• The number of genes that regulate a given target is a constant (call it K) for all regulated genes; K

is a small integer.
• The regulatory signal associated with a connection or the expression of a gene is either on or off.

(In fact, almost certainly it is not just the fact of a connection between genes that influences regulation,
but rather the nature of that connection as a continuous time-varying value such as a molecular concen-
tration over time.)

• Every gene is governed by the same transition rule (i.e., a Boolean function) that specifies its state
(on or off) as a function of the activities of its K inputs at the immediately earlier time.

• The regulatory network operates synchronously (and, by implication, kinetics are unimportant).
• Secondary effects on genetic regulation arising from the nondigital characteristics of DNA (such

as methylation) can be neglected.
• The genes that regulate and genes that are regulated (which may overlap) are connected at

random.

Box 5.9 provides more details about this model. Because the model treats all genes as identical (i.e.,
all obey the same transition rule) and assigns connections between genes at random, it obviously lacks
fidelity to any specific genome and cannot predict the biological phenomenology of any specific organ-
ism. Yet, it may provide insight into biological order that emerges from the structure of the genetic
regulatory network itself.

Simulations of the operation of this model yielded interesting behavior, which depends on the
values of N and K. For K = 1 or K > 5, the behavior of the network exhibits little interesting order, where
order is defined in terms of fixed cycles known as attractors. If K = 1, the networks are static, with the
number of attractors exponential in the size of the network and the cycle length approaching unity. If
K > 5, there are few attractors, and it is the cycle length that is exponential in the size of the network.
However, for K = 2, the network does exhibit order that has potential biological significance—both the
number of attractors and the cycle length are proportional to N1/2.75

What might be the biological significance of these results?

• The trajectory of an attractor through its successive states would reflect the fact that, over time,
different genes are expressed in a biological organism.

• The fact that there are multiple attractors within the same genome suggests that multiple biologi-
cal structures might exist, even within the same organism, corresponding to the genome being in one of
these attractor states. An obvious candidate for such structures would be multiple cell types. That is,
this analysis suggests that a cell type corresponds to a given state cycle attractor, and the different
attractors to the different cell types of the organism. Another possibility is that different but similar
attractors correspond to cells in different states (e.g., disease state, resting state, perturbed state).

• The fact that an attractor is cyclic suggests that it may be related to cyclic behavior in a biological
organism. If cell types can be identified with attractors, the cyclic trajectory in phase space of an
attractor may correspond to the cell cycle in which a cell divides.

• States that can be moved from one trajectory (for one attractor) to another trajectory (and another
attractor) by changing a single state variable are not robust and may represent the phenomenon that
small, apparently minor perturbations to a cell’s environment may kick it into a different state.

• The square root of the number of genes in the human genome (around 30,000) is 173. Under the
assumption of K = 2 scaling, this would correspond to the number of cyclic attractors and thus to the
number of cell types in the human body. This is not far from the number of cell types actually observed

75A. Bhattacharjya and S. Liang, “Power-Law Distributions in Some Random Boolean Networks,” Physical Review Letters
77(8):1644, 1996.
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(about 200). Such a result may be numerological coincidence or rooted in the fact that nearly all cells in
a given organism (even across eukaryotes) share the same basic housekeeping mechanisms (metabo-
lism, cell-cycle control, cytoskeletal construction and deconstruction, and so on), or it may reflect phe-
notypic structure driven by the large-scale connectivity in the overall genetic regulatory network. More
work will be needed to investigate these possibilities.76  Box 5.10 provides one view on experimental
work that might be relevant.

To illustrate the potential value of Boolean networks as a model for genetic regulatory net-
works, consider their application to understanding the etiology of cancer.77  Specifically, cancer is

Box 5.9
Finite-state Automata and a Comparison of Genetic Networks and Boolean Networks

In Kaufmann’s Boolean representation of a genetic regulatory network, there are N genes, each with two states
of activity (expressed or inhibited), and hence 2N possible states (i.e., sets of activities) in the network. The
number of possible connections is combinatorial in N and K. Starting at time t, each gene makes a transition
to a new state at time t + 1 in accord with the transition rule and the K inputs that it receives. Thus, the state
of the network at a time t + 1 is uniquely determined from its state at time t. The trajectory of the network as
t changes (i.e., the sequence of states that the network assumes) is analogous to the process by which genes
are expressed.

This network is an instantiation of a finite-state automaton. Since there are a finite number of states (2N), the
system must eventually find itself in a state previously encountered. Since the system is deterministic, the
network then cycles repeatedly through a fixed cycle, called an attractor. Every possible system state either
leads to some attractor or is part of an attractor.

Different initial conditions may or may not lead to different attractors. All of the initial conditions that lead to
the same attractor constitute what is known as a “basin” for that attractor. Any state within a basin can be
exchanged with any other state in the same basin without changing the behavior of the network in the long
run. In addition, given a set of attractors, no attractor can intersect with another (i.e., pass through even one
state that is contained in another attractor). Thus, attractors are intrinsically stable and are analogous to the
genetic expression pattern in a mature cell.

An attractor may be static or dynamic. A static attractor involves a cycle length of one (i.e., the automaton
never changes state). A dynamic attractor has a cycle length greater than one (i.e., a sequence of states repeats
after some finite number of time increments). Attractors that have extremely long cycle lengths are regarded as
chaotic (i.e., they do not repeat in any amount of time that would be biologically interesting).

Two system states differing in only a small number of state variables (i.e., having only a few bits that differ out
of the entire set of N variables) often lie on dynamical trajectories that converge closer to one another in state
space. In other words, their attractors are robust under small perturbations. However, there can be states
within a basin of attraction that differ in only one state variable from a trajectory that can lead to a different
attractor.

76This point is discussed further in Section 5.4.2.2 and the references therein.
77Z. Szallasi and S. Liang, “Modeling the Normal and Neoplastic Cell Cycle with ‘Realistic Boolean Genetic Networks’: Their

Application for Understanding Carcinogenesis and Assessing Therapeutic Strategies,” Pacific Symposium on Biocomputing, pp. 66-
76, 1998.
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widely believed to be a pathology of the hereditary apparatus. However, it has been clear for some
time that single-cause, single-effect etiologies cannot account for all or nearly all occurrences of
cancer.78

Box 5.10
Testing the Potential Relevance of the Boolean Network Model

Because of the extreme simplifications embedded in the Boolean network model, detailed predictions (e.g.,
genes A and B turn on gene C) are unlikely to be possible. Instead, the utility of this approach as a way of
looking at genetic regulation will depend on its ability to make qualitative predictions about large-scale
structure and trends. Put differently, can Boolean networks behave in biologically plausible ways?

Under certain circumstances, Boolean networks do exhibit certain regularities. Thus, the operative question is
whether these features have reasonable biological interpretations that afford insight into the integrated behav-
ior of the genomic system. Consider the following:

1. A large fraction of the genes in Boolean networks converge to fixed states of activity, on or off, that contain
the same genes on all cell-type attractors. The existence of this “stable core” predicts that most genes will be
in the same state of activity on all cell types of an organism. Direct experimental testing of this prediction is
possible using DNA chip technology today.
2. Nearby states in the state space of the system typically lie on trajectories that converge on each other in
state space. This might be tested by cloning exogenous promoters upstream of a modest number of randomly
chosen genes to transiently activate them, or by using inhibitory RNA to transiently inactivate a gene’s RNA
products, and following the trajectory of gene activities in unperturbed cells over time and perturbed cells
where the gene’s activity is transiently altered, using DNA chips to assess whether the states of activity be-
come more similar.
3. The Boolean model predicts that if randomly chosen genes are transiently reversed in their activity, a
downstream avalanche of gene activities will ensue. The size distribution of these avalanches is predicted to
be a power law, with many small avalanches and few large ones. There is a rough maximum size avalanche
that scales as about three times the square root of the number of genes, hence about 500 for human cells. This
is testable, again by cloning upstream controllable promoters to transiently activate random genes, or inhib-
itory RNA to transiently inactivate random genes, and following the resulting avalanche of changes in gene
activities over time using DNA chips.
4. The Boolean model assumes cell types are attractors. As such, cell-type attractors are stable to about 95
percent of the single gene perturbations—the system returns to the attractor from which it was perturbed.
Similarly, it is possible to test whether cell types are stable in the same homeostatic way by perturbing the
activity of many choices of single genes, one at a time.
5. The stable core leaves behind “twinkling islands” of genes that are functionally isolated from one another.
These are the subcircuits that determine differentiation, since each island has its own attractors, and the
attractors of the network as a whole are unique choices of attractor from each of the twinkling islands in a kind
of combinatorial epigenetic code. Current techniques can test for such islands by starting avalanches from
different single genes. Two genes in the same island should have overlapping downstream members of the
avalanches they set off. Genes in different islands should not. The caveat here is that there may be genes
downstream from more than one island, affected by avalanches started in each.

SOURCE: Stuart Kauffman, Santa Fe Institute, personal communication, September 20, 2002.

78See, for example, T. Hunter, “Oncoprotein Networks,” Cell 88(3):333, 1997; B. Vogelstein and K.W. Kinzler, “The Multistep
Nature of Cancer,” Trends in Genetics 9(4):138, 1993. (Cited in Szallasi and Liang, 1998.)
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If the correspondence between attractor and cell is assumed, malignancy can be viewed as an
attractor similar in most ways to that associated with a normal cell,79  and the transition from normal to
malignant is represented by a “phase transition” from one attractor to another. Such a transition might
be induced by an external event (radiation, chemical exposure, lack of nutrients, and so on).

As one illustration, Szallasi and Liang argue that changes in large-scale gene expression patterns
associated with conversion to malignancy depend on the nature of attractor transition in the underlying
genetic network in three ways:

1. A specific oncogene can induce changes in the state of downstream genes (i.e., genes for which
the oncogene is part of their regulatory network) and transition rules for those genes without driving
the system from one attractor to another one. If this is true, inhibition of the oncogene will result a
reversion of those downstream changes and a consequent normal phenotype. In some cases, just such
phenomenology has been suggested,80  although whether or not this mechanism is the basis of some
forms of human cancer is unknown as yet.

2. A specific oncogene could force the system to leave one attractor and flow into another one. The
new attractor might have a much shorter cycle time (implying rapid cell division and reproduction)
and/or be more resistant to outside perturbations (implying difficulty in killing those cells). In this case,
inhibition of the oncogene would not result in reversion to a normal cellular state.

3. A set of “partial” oncogenes may force the system into a new attractor. In this case, no individual
partial oncogene would induce a phenotypical change by itself—however, the phenomenology associ-
ated with a new attractor would be similar.

These different scenarios have implications for both research and therapy. From a research perspec-
tive, the operation of the second and third mechanisms implies that the network’s trajectory through
state space is entirely different, a fact that would impede the effectiveness of traditional methodologies
that focus on one or a few regulatory pathways or oncogenes. From a therapeutic standpoint, the
operation of the latter two mechanisms implies that a focus on “knocking out the causal oncogene” is
not likely to be very effective.

5.4.3.3 Genetic Regulation as Circuits

Genetic networks can also be modeled as electrical circuits.81  In some ways, the electrical circuit
analogy is almost irresistible, as can be seen from a glance at any of the known regulatory pathways: the
tangle of links and nodes could easily pass for a circuit diagram of Intel’s latest Pentium chip. For
example, McAdams and Shapiro described the regulatory network that governs the course of a λ-phage
infection in E. coli as a circuit, and included factors such as time delays, which are critical in biological
networks (gene transcription and translation are not instantaneous, for example) and indeed, in electri-
cal networks, as well.

More generally, nature’s designs for the cellular circuitry seems to draw on any number of tech-
niques that are very familiar from engineering: “The biochemical logic in genetic regulatory circuits
provides real-time regulatory control [via positive and negative feedback loops], implements a branch-

79S.A. Kauffman, “Differentiation of Malignant to Benign Cells,” Journal of Theoretical Biology 31:429, 1971. (Cited in Szallasi and
Liang, 1998.)

80S. Baasner, H. von Melchner, T. Klenner, P. Hilgard, and T. Beckers, “Reversible Tumorigenesis in Mice by Conditional
Expression of the HER2/c-erbB2 Receptor Tyrosine Kinase,” Oncogene 13(5):901, 1996. (Cited in Szallasi and Liang, 1998.)

81H.H. McAdams and L. Shapiro, “Circuit Simulation of Genetic Networks,” Science 269(5224):650-656, 1995.
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ing decision logic, and executes stored programs [in the DNA] that guide cellular differentiation ex-
tending over many cell generations.”82  Table 5.2 describes some of the similarities.

Of course, taking an engineering view of biological circuits does not make understanding them
trivial. For example, consider that cellular regulatory circuits implement a complex adaptive control
system. Understanding this system is greatly complicated by the fact that at the biochemical implemen-
tation level, the distinction between the controlling mechanisms and the controlled processes is not as
clear as it is when such control is engineered into a human-designed artifact. In a biochemical environ-
ment, control reactions and controlled functions are composed of intermingled molecules interacting in
ways that make identification of roles much more complex.

Nor does the analogy to electrical circuits always carry over perfectly. Because critical molecules are
often present in the cell in extremely small quantities, to take the most notable example, certain critical
reactions are subject to large statistical fluctuations, meaning that they proceed in fits and starts, much
more erratically than their electrical counterparts.

5.4.3.4 Combinatorial Synthesis of Genetic Networks83

Guet et al. have demonstrated the feasibility of creating synthetic networks, composed of well-
characterized genetic elements, that provide a framework for understanding how diverse phenotypi-

TABLE 5.2 Points of Similarity Between Genetic Logic and Electronic Digital Logic in Computer
Chips

Characteristic Electronic Logic Genetic Logic

Signals Electron concentrations Protein concentrations
distribution Point-to-point (by wires Distributed volumetrically by

or by electrically encoded diffusion or compartment-to-
addresses) compartment by active

transport mechanisms
Organization Hierarchical Hierarchical
logic type Digital, clocked, sequential Analog, unclocked (can

logic approximate asynchronous
sequential logic; dependent on
relative timing of signals)

Noise Inherent noise due to discrete Inherent noise due to discrete
electron events and chemical events and

   environmental effects environmental effects

Signal-to-noise ratio Signal-to-noise ratio high in Signal-to-noise ratio low in
most circuits  most circuits

Switching speed Fast (>10–9 s–1) Slow (<10–2 s–1)

SOURCE: Excerpted with permission from H. McAdams and A. Arkin, “Simulation of Prokaryotic Genetic Circuits,” Annual
Review of Biophysics and Biomolecular Structure 27:199-224, 1998, available at http://caulo.stanford.edu/usr/hm/pdf/
1998_McAdams_simulation_genetic_circuits.pdf. Originally published by Annual Review of Biophysics and Biomolecular Structure.

82H.H. McAdams and A. Arkin, “Simulation of Prokaryotic Genetic Circuits,” Annual Reviews of Biophysical and Biomolecular
Structure 27:199-224, 1998.

83Section 5.4.3.4 is based on C.C. Guet, M.B. Elowitz, W. Hsing, and S. Leibler, “Combinatorial Synthesis of Genetic Net-
works,” Science 296(5572):1466-1470, 2002.
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cal functionality can (but does not always) arise from changes in network topology rather than
changes in the elements themselves. This functionality includes networks that exhibit the behavior
associated with negative and positive feedback loops, oscillators, and toggle switches. By showing
that functionality can change dramatically due to changes in topology, Guet et al. argue that once a
simple set of genes and regulatory elements is in place, it is possible to jump discontinuously from
one functional phenotype to another using the same “toolkit” of genes simply by modifying the
regulatory connections. Such discontinuous changes are different from the more gradual effects driven
by successive point mutations.

Such discontinuities reflect the nonlinear nature of genetic networks. Furthermore, the topology of
connectivity of a network does not necessarily determine its behavior uniquely, and the behavior of
even simple networks built out of a few well-characterized components cannot always be inferred from
connectivity diagrams alone. Because genetic networks are nonlinear (and stochastic as well), the un-
known details of interactions between components might be of crucial importance to understanding
their functions. Combinatorially developed libraries of simple networks may thus be useful in uncover-
ing the existence of additional regulatory mechanisms and exploring the limits of quantitative modeling
of cellular systems.

The system of Guet et al. uses a small number of elements restricted to a single type of interaction
(transcriptional regulation), but the range of biochemical interactions can be extended by including
other modular genetic elements. For example, the approach can be extended to include linking input
and output through cell-cell signaling molecules, such as those involved in quorum sensing. Also, this
combinatorial strategy can be used to search for other dynamic behaviors such as switches, sensors,
oscillators, and amplifiers, as well as for high-level structural properties such as robustness or noise
resistance.

5.4.3.5 Identifying Systems Responses by Combining Experimental
Data with Biological Network Information

Mawuenyega et al. have developed a method to identify specific subnetworks in large biological
networks.84 A biological network is constructed by identifying components (genes, proteins, transcrip-
tion factors, chemicals) and interactions between components (protein-protein, protein-DNA, signal
transduction, gene expression, catalysis) from genome context information as well as from external
sources (databases, literature, and direct interaction with experimentalists). By superimposing experi-
mental data such as expression values or identified proteins, it is possible to identify a best-scored
subnetwork in the large biological network. This subnetwork is known as the response network, identify-
ing a system’s response with respect to the experimental scenario and data used.

Proteomic mass spectroscopy (MS) analysis was used to identify and characterize 1,044 Mycobacte-
rium tuberculosis (TB) proteins and their corresponding cellular locations. From these 1,044 identified, 70
proteins were selected that are known to function in lipid biosynthesis (20) and fatty acid degradation
(50). It is striking that the identified proteins involved in fatty acid degradation were distributed be-
tween the different cellular compartments in an almost exclusive fashion (e.g., in the subnetwork
centered on fadB2 and fadB3) (Figure 5.9).

In addition, Forst and colleagues performed a response network analysis of mycobacterium tubercu-
losis to isoniazid (INH) drug treatment.85 The entirety of the FAS-II fatty acid synthase group (except

84K.G. Mawuenyega, C.V. Forst, K.M. Dobos, J.T. Belisle, J. Chen, M.E. Bradbury, A.R. Bradbury, and X. Chen, “Mycobacte-
rium Tuberculosis Functional Network Analysis by Global Subcellular Protein Profiling,” Molecular Biology of the Cell 16:396-404,
2005.

85L. Cabusora, E. Sutton, A. Fulmer, and C.V. Forst, “Differential Network Expression During Drug and Stress Response,”
Bioinformatics 21:2898-2905, 2005, available at http://bioinformatics.oupjournals.org/cgi/content/abstract/bti440v1.
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acpM, which was not included in the interaction data used to construct the original, whole network)
showed up in the INH response network, all with significant up-regulation (Figure 5.10). Furthermore,
the specific removal of these genes (kasA, kasB, fabD, accD6) from the initial set of genes did not affect
their presence in the INH response subnetwork: the newly calculated network continued to contain
each of them. Forst concluded that INH does directly interfere with the FAS-II fatty acid production
pathway, in confirmation of earlier results.

Fatty Acid Degradation Network
Fatty acid degradation
Lipid biosynthesis
Neither

Cytoplasm
Cell wall
Membrane

Membrane and cell wall
Membrane and cytoplasm

FIGURE 5.9 Fatty acid degradation network. SOURCE: Courtesy of Christian Forst, Los Alamos National Labora-
tories, December 8, 2004.
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5.4.4 Organ Physiology

Sydney Brenner has noted that “genes can only specify the properties of the proteins they code for,
and any integrative properties of the system must be ‘computed’ by their interactions.”86  In this context,
subcellular behavior and function represents a first level of “computed” interaction; cellular behavior and
function, a second level. Organization of cells into organs provides a context for cellular behavior, and in
the words of Denis Noble, “successful physiological analysis requires an understanding of the functional
interactions between the key components of cells, organs, and systems, as well as how these interactions
change in disease states. This information resides neither in the genome nor even in the individual
proteins that genes code for. It lies at the level of protein interactions within the context of subcellular,
cellular, tissue, organ, and system structures. There is therefore no alternative to copying nature and
computing these interactions to determine the logic of healthy and diseased states. The rapid growth in
biological databases; models of cells, tissues, and organs; and the development of powerful computing
hardware and algorithms have made it possible to explore functionality in a quantitative manner all the
way from the level of genes to the physiological function of whole organs and regulatory systems.”87

5.4.4.1 Multiscale Physiological Modeling88

Physiological modeling is the modeling of biological units at a level of aggregation larger than that
of an individual cell. Biological units can be successively decomposed into subunits (e.g., an organism
may consist of subsystems for circulatory, pulmonary, digestive, and cognitive function; a digestive

FIGURE 5.10 The isoniazid (INH) response network. Red nodes indicate up-regulated genes. Blue nodes indicate
down-regulated genes. SOURCE: Courtesy of Christian Forst, Los Alamos National Laboratories, December 8,
2004.

86S. Brenner, “Biological Computation,” The Limits of Reductionism in Biology. Wiley, Chichester, UK, 1998, pp. 106-116.
87D. Noble, “Modeling the Heart—from Genes to Cells to the Whole Organ,” Science 295(5560):1678-1682, 2002.
88Much of the material in Section 5.4.4.1 is based on excerpts from A.D. McCulloch and G. Huber, “Integrative Biological

Modelling in Silico,” Novartis Foundation Symposium 247:4-19, 2002.
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system may consist of esophagus, stomach, and intestines; and so on down to the level of organelles
within cells and molecular functions within organelles), and every unit depends on the coordinated
interaction of its subunits.

Given the complexity of physiological modeling, it makes sense to replicate this natural organiza-
tion. Thus, models of tissue, organs, and even entire organisms are relevant subjects of physiological
modeling. Functional behavior in each of these entities depends on activity at all spatial and temporal
scales associated with structure from protein to cell to tissue to organ to whole organism (Box 5.11) and
requires the integration of interacting physiological processes such as regulation, growth, signaling,
metabolism, excitation, contraction, and transport processes. One term sometimes used for work that
involves such integration is “physiome” (or by analogy to genomics,“physiomics”).89

Integration of such models presents many intellectual challenges. Following McCulloch and
Huber,90 it is helpful to consider two different types of integration. Structural integration implies integra-
tion across physical scales of biological organization from protein to whole organism, while functional
integration refers to the integrated representation of interacting physiological processes. Structurally
integrative models (e.g., models of molecular dynamics and other strategies that predict protein func-
tion from structure) are driven by first principles and hence tend to be computation-intensive. Because
they are based on first principles, they impose constraints on the space of possible organismic models.
Functionally integrative models are strongly data-driven and therefore data-intensive, and are needed
to bridge the multiple time and space scales of substructures within an organism without leaving the
problem computationally intractable. Box 5.12 provides a number of examples of intersection between
structurally and functionally integrated models.

Predictive simulations of subcomponents at various levels of the hierarchy of complexity are gener-
ally based on physicochemical first principles. Integrating such simulations, of which micromechanical
tissue models and molecular dynamics models are examples, with each other across scales of biological
organization is highly computationally intensive (and requires a computational infrastructure that
enables distributed and heterogeneous computational resources to participate in the integration and
facilitates the modular addition of new models and levels of organization).

5.4.4.2 Hematology (Leukemia)

Childhood acute lymphoblastic leukemia (ALL) is a lethal but highly treatable disease. However,
successful treatment depends on the ability to deliver the correct intensity of therapy. Improper inten-
sity can result in an excess of deaths caused by toxicity, decreased mental function over the long term,
and undertreatment for high-risk cases.

The appropriate intensity is determined today through an extensive—and expensive—range of
procedures including morphology, immunophenotyping, cytogenetics, and molecular diagnostics.
However, Limsoon Wong has developed a relatively inexpensive single-platform microarray test that
uses gene expression profiling to identify each of the known clinically important subgroups of child-
hood ALL (Figure 5.11) and hence the appropriate intensity of treatment.91  This is confirmed using
computer-assisted supervised learning algorithms, in which an overall diagnostic accuracy of 96 per-
cent was achieved in a blinded test sample. To determine whether expression profiling at diagnosis

89J.B. Bassingthwaighte, “Toward Modeling the Human Physionome,” pp. 331-339 in Molecular and Subcellular Cardiology:
Effects on Structure and Function, S. Sideman and R. Beyar, eds., Plenum Press, New York, Volume 382 in Advanced Experiments
in Medical Biology, 1995; http://www.physiome.org/.

90A.D. McCulloch and G. Huber, “Integrative Biological Modelling in Silico,” pp. 4-25 in ‘In Silico’ Simulation of Biological
Processes No. 247, Novartis Foundation Symposium, G. Bock and J.A. Goode, eds., John Wiley & Sons Ltd., Chichester, UK, 2002.

91L. Wong, “Diagnosis of Childhood Acute Lymphoblastic Leukemia and Optimization of Risk-Benefit Ratio of Therapy,”
PowerPoint presentation presented at the Institute for Infocomm Research, 2003, Singapore, available at http://sdmc.lit.org.
sg:8080/~limsoon/psZ/wls-aasbi03.ppt.
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might further help identify those patients who are likely to relapse up to 4 years later, the expression
profiles of four groups of leukemic samples with different outcomes were compared. Distinct gene
expression profiles for each of these groups were identified.

5.4.4.3 Immunology

The immune system provides protection for human beings from pathogens. (For purposes of this
discussion, the immune system of interest here refers to the adaptive immune system. The human body
also has an innate immune system that provides a first response to pathogens that is essentially inde-
pendent of the specific pathogen—in essence, its role is to give the adaptive immune system time to
build a more specific response.) To do so, the immune system must first identify an entity within the
body as a harmful pathogen that it should attack or eliminate and then mount a response that does so.

In principle, the identification of harmful pathogens might be based on a list of known pathogens.
If an entity is found within the human body that is sufficiently similar to a known pathogen, it could be
marked for later attack and destruction. However, a list-based approach to pathogen identification
suffers from two major weaknesses. First, any such list would have to be large enough to include most
of the possible pathogens that an organism might encounter in its lifetime; some estimates of the
number of different foreign molecules that the human immune system is capable of recognizing are as
high as 1016.92  Second, because pathogens evolve (and, thus, new pathogens are created), an a priori list
could never be complete.

Accordingly, nature has developed an alternative mechanism for pathogen identification based on
the notion of “self” versus “nonself.” In this paradigm, entities or substances that are recognized as self
are deemed harmless, while those that are nonself are regarded as potentially dangerous. Thus, the
immune system has developed a variety of mechanisms to differentiate between these two categories.
Note that this distinction is highly simplistic, as not all nonself entities are bad for the human body (e.g.,
transplanted organs that replace original organs damaged beyond repair). Nevertheless, the self-non-
self distinction is not a bad point of departure for understanding the human immune system.

The immune system relies on a process that generates detectors for a subset of possible pathogens
and constantly turns over those detectors for new detectors capable of identifying a different set of
pathogens. When the immune system identifies a pathogen, it selects one of several immunological
mechanisms (e.g., those associated with the different immunoglobulin [Ig] groups) to eliminate it.
Furthermore, the immune system retains memory of the pathogen, in the form of detectors that are
specifically configured for high affinity to that pathogen. Such memory enables the immune system to
confer long-lasting resistance (immunity) to pathogens that may be encountered in the future and to
mount a stronger response to such future encounters.

Many of the broad outlines of the immune system are believed to be understood, and computa-
tional modeling of the immune system has shed important light on its detailed workings, as described
in Box 5.13. A medical application of simulation models in immunology has been to evaluate the effects
of revaccinating someone yearly for influenza. Because of the phenomenon of immune memory, a
vaccine that is too similar to a prior year’s vaccine will be eliminated rapidly by the immune response (a
negative interference effect). A simulation model by Smith et al. has examined this effect and suggests
some circumstances under which individuals who are vaccinated annually will have greater or less
protection than those with a first-time vaccination.93  The Smith et al. results also suggested that in the
production of flu vaccine, a choice among otherwise equivalent strains (i.e., strains thought to be

92J. Inman, “The Antibody Combining Region—Speculations on the Hypothesis of General Multispecificity,” Theoretical Immu-
nology, G. Bell, ed., Dekker, New York, 1978.

93D.J. Smith, S. Forrest, D.H. Ackley, and A.S. Perelson, “Variable Efficacy of Repeated Annual Influenza Vaccination,” Pro-
ceedings of the National Academy of Sciences 96(24):14001-14006, 1999.
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Box 5.11
Levels of Biological Organization

One helpful approach is to consider a set of different, but interrelated, levels of biological organization:

• Organ system, in which the entire organ can be represented by a lumped-parameter systems model that
can be used to predict the gross behavior of the organ. In the case of the heart, one model can be based on the
notion of arterial impedance, which can be used to generate the dynamic pressure boundary conditions acting
on the cardiac chambers.
• Whole organ continuum, in which the physical behavior and dynamical responses of the organ can be
calculated from finite element methods that solve the continuum equations for the mechanics of the organ. In
the case of the heart, boundary conditions such as ventricular cavity pressures are computed from the lumped
parameter model in the top level. Detailed parametric models of three-dimensional cardiac geometry and
muscle fiber orientations have been used to represent the detailed structure of the whole organ with submil-
limeter resolution.1

• Tissue, in which constitutive laws for the continuum models are evaluated at each point in the whole organ
continuum model and obtained by homogenizing the results of multicellular network models. That is, homog-
enization theory can be used to re-parameterize the results of a micromechanical analysis into a form suitable
for continuum-scale stress analysis. In the case of tissue mechanics for the heart, the basic functional units of
tissue are represented, such as laminar myocardial sheets as ensembles of cell and matrix micromechanics
models and, in some cases, the microvascular blood vessels as well.2 A variety of approaches for these models
have been used, including stochastic models based on measured statistical distributions of myofiber orienta-
tions.3 In cardiac electrophysiology, the tissue level is typically modeled as resistively coupled networks of
discrete cellular models interconnected in three dimensions.4

• Single cell, in which different types of cells are represented. As a rule, single-cell models bridge to stochas-
tic state-transition models of macromolecular function through subcellular compartment models of represen-
tative tissue structures (e.g., the sarcomere in the case of the heart). Heart cells of different types to be modeled
are representative cells from different regions of the heart, such as epicardial cells, midventricular M-cells, and
endocardial cells. For mechanical models, individual myofibrils and cytoskeletal structures are modeled by
lattices and networks of rods, springs, and dashpots in one, two, or three dimensions.
• Macromolecular complex, in which representative populations of cross-bridges or ion channels are mod-
eled. Such complexes are typically described by Markov models of stochastic transitions between discrete
states of, for example, channel gating, actin-myosin binding, or nucleotide bound to myosin.
• Molecular model, in which single cross-bridges and ion channels are represented. Cross-bridges move
according to Brownian dynamics, and it is necessary to use weighted-ensemble dynamics to allow the simu-
lation to clear the energy barriers. (For example, a weighted-ensemble Brownian dynamics simulation of ion
transport through a single channel can be used to compute channel gating properties from the results of a
hierarchical collective motion (HCM) simulation of the channel complex.) The flexibility of the cross-bridges
themselves can be derived from the HCM method, and the interactions with other molecules can be comput-
ed using continuum solvent approximations.
• Atomic model, in which molecules are represented in terms of the positions of their constituent atoms in
crystallographic structures. (Such data can be found in public repositories such as the Protein Data Bank.)
Such data feed molecular dynamics simulations in order to build the HCM model.

The approach described above—of integrating models across structural and functional lines—is generally
adaptable to other tissues and organs, especially those with physical functions, such as lung and cartilage.
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Box 5.12
Examples of Intersection Between Structurally and Functionally Integrated Models

There are a number of examples of intersection between structurally and functionally integrated models,
including the following:

• Linkage of biochemical networks and spatially coupled processes, such as calcium diffusion in structurally
based models of cell biophysics;1

• Use of physicochemical constraints to optimize genomic systems models of cell metabolism;2

• Integration of genomic or cellular system models into multicellular network models of memory and learn-
ing,3 developmental pattern formation,4 or action potential propagation;5

• Integration of structure-based predictions of protein function into systems models of molecular networks;
• Development of kinetic models of cell signaling and coupling them to physiological targets such as energy
metabolism, ionic currents or cell motility;6

• Use of empirical constraints to optimize protein folding predictions;7 and
• Integration of systems models of cell dynamics into continuum models of tissue and organ physiology.8

1L.M. Loew, “The Virtual Cell Project,” Novartis Foundation Symposium 247:151-161, 2002; L.M. Loew and J.C. Schaff, “The Virtual Cell:
A Software Environment for Computational Cell Biology,” Trends in Biotechnology 19(10):401-406, 2001.

2B.O. Palsson, “What Lies Beyond Bioinformatics?” Nature Biotechnology 15:3-4, 1997; C.H. Schilling, J.S. Edwards, D. Letscher, and
B.O. Palsson, “Combining Pathway Analysis with Flux Balance Analysis for the Comprehensive Study of Metabolic Systems,” Biotechnology
and Bioengineering 71(4):286-306, 2000-2001.

3D. Durstewitz, J.K. Seamans, and T.J. Sejnowski, “Neurocomputational Models of Working Memory,” Nature Neuroscience
3(Supplement):S1184-S1191, 2000; P.H. Tiesinga, J.M. Fellous, J.V. Jose, and T.J. Sejnowski, “Information Transfer in Entrained Cortical
Neurons,” Network: Computation in Neural Systems 13(1):41-66, 2002.

4E.H. Davison, J.P. Rast, P. Oliveri, A. Ransick, C. Calestani, C.H. Yuh, T. Minokawa, et al., “A Genomic Regulatory Network for
Development,” Science 295(5560):1669-1678, 2002.

5R.M. Shaw and Y. Rudy, “Electrophysiologic Effects of Acute Myocardial Ischemia: A Mechanistic Investigation of Action Potential
Conduction and Conduction Failure,” Circulation Research 80(1):124-138, 1997.

6J.M. Levin, R.C. Penland, A.T. Stamps, and C.R. Cho, “Using in Silico Biology to Facilitate Drug Development.,” in Novartis Foundation
Symposium 247: 222-238, 2002.

7L. Salwinski and D. Eisenberg, “Motif-based Fold Assignment,” Protein Science 10(12):2460-2469, 2001.
8R.L. Winslow, D.F. Scollan, A. Holmes, C.K. Yung, J. Zhang, M.S. Jafri, “Electrophysiological Modeling of Cardiac Ventricular Function:

From Cell to Organ,” Annual Reviews of Biomedical Engineering 2: 119-155, 2002; N.P. Smith, P.J. Mulquiney, M.P. Nash, C.P. Bradley,
D.P. Nickerson, and P.J. Hunter, “Mathematical Modelling of the Heart: Cell to Organ,” Chaos, Solitons and Fractals 13:1613-1621, 2002.

SOURCE: A.D. McCulloch and G. Huber, “Integrative Biological Modelling in Silico,” pp. 4-19 in ‘In Silico’ Simulation of Biological
Processes No. 247, Novartis Foundation Symposium, G. Bock and J.A. Goode, eds., John Wiley & Sons Ltd., Chichester, UK, 2002.
Reproduced with permission from John Wiley & Sons Ltd.

1F.J. Vetterand A.D. McCulloch, “Three-dimensional Analysis of Regional Cardiac Function: A Model of Rabbit Ventricular Anatomy,”
Progress in Biophysics and Molecular Biology 69(2-3):157-183, 1998.

2K. May-Newman and A.D. McCulloch, “Homogenization Modelling for the Mechanics of Perfused Myocardium,” Progress in Biophysics
and Molecular Biology 69(2-3):463-481, 1998.

3T.P. Usyk, J.H. Omens, and A.D. McCulloch, “Regional Septal Dysfunction in a Three-dimensional Computational Model of Focal
Myofiber Disarray,” American Journal of Physiology 281(2):H506-H514, 2001.

4L.J. Leon and F.A. Roberge, “Directional Characteristics of Action Potential Propagation in Cardiac Muscle: A Model Study,” Circulation
Research 69: 378-395, 1991.

SOURCE: Adapted from A.D. McCulloch and G. Huber, “Integrative Biological Modelling in Silico,” pp. 4-25 in ‘In Silico’ Simulation of
Biological Processes No. 247, Novartis Foundation Symposium, G. Bock and J.A. Goode, eds., John Wiley & Sons Ltd., Chichester, UK,
2002.
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94A.D. McCulloch and G. Huber, “Integrative Biological Modelling in Silico,” pp. 4-25 in ‘In Silico’ Simulation of Biological
Processes No. 247, Novartis Foundation Symposium, G. Bock and J.A. Goode, eds., John Wiley & Sons Ltd., Chichester, UK, 2002.

equally good guesses of the upcoming epidemic strain and equally appropriate for manufacture) should
be resolved in favor of the strain that is most different from the one used in the previous year, because
this choice would reduce the effects of negative interference and thus potentially increase vaccine
efficacy in recipients of repeat vaccines.

5.4.4.4 The Heart

The heart is an organ of primary importance in vertebrates, and heart disease is one of the primary
causes of death in the Western world. At the same time, the heart is an organ of high complexity.
Although it is in essence an impulsive pump, it is a pump that must operate continuously and repair
itself if necessary while in operation. Its output must be regulated according to various physiological
conditions in the body, and its performance is affected by the characteristics of the arterial and vein
networks to which it is connected.

The heart brings together many subsystems that interact mutually through fundamental physi-
ological processes. As a general rule, physiological processes have both functional and structural di-
mensions. For example, cells are functionally specialized—blood cells and myocytes (heart cells) do
different things. Furthermore, blood cells and heart cells are themselves part of a collective of other
blood cells and heart cells; thus, the structure within which an individual cell is embedded is relevant.

An integrated computational model of the heart would bring together all of the relevant physiologi-
cal processes (Box 5.14).94  Were such a model available, it would be possible to investigate common

FIGURE 5.11 Microarray expression groupings indicating known clinically important subgroups of childhood
acute lymphoblastic leukemia (ALL). Note in particular the second column from the right, labeled “novel.” In this
instance, the hierarchical clustering of gene expression reveals a novel subtype of childhood ALL. SOURCE:
Courtesy of L. Wong, Institute for Infocomm Research, Singapore, 2003.
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heart diseases and to probe cardiac structure and function in different places in the heart—a point of
some significance in light of the fact that heart failure is usually regional and nonhomogeneous. The
graphic in Box 5.14 emphasizes functional integration in the heart, and the majority of functional
interactions take place at the scale of the single cell. However, an organism’s behavior depends on
interactions that span many orders of magnitude of space and time (from molecular structures and
events to whole-organ anatomy and physiology). Thus, high-fidelity modeling of an organism or organ
system within an organism demands the integration of information across similar scales.

An example of a functional model of a single cell is the work of Winslow et al. in modeling the
cardiac ventricular cell, and specifically the relationship between various current flows in the cell and

Box 5.13
Modeling in Immunology

In basic immunology, issues related to mutation also have been the focus of mathematical modeling and intense
experimentation. . . . [For example,] during the course of an immune response, B lymphocytes within germinal
centers can rapidly mutate the genes that code for antibody variable regions. The immune system thus provides an
environment in which evolution occurs on a time scale of weeks. Among the large number of mutant B cells that are
generated, selection chooses for survival those B cells that have increased binding affinity for the antigen that
initiated the response. After 2 to 3 weeks, antibodies can have improved their equilibrium binding constant for
antigen by one to two orders of magnitude, and may have sustained as many as 10 point mutations. How can the
immune system generate and select variants with higher fitness this rapidly and this effectively? An optimal control
model has suggested that mutation should be turned on and off episodically in order to allow new variants time to
expand without being subjected to the generally deleterious effects of mutation. Time-varying mutation could be
implemented by having cells recycle through one region of the germinal center, mutating while there, and prolifer-
ating in a different region of the germinal center. This suggestion has generated new experimental investigations of
events that occur within germinal centers. Opportunities exist for a range of models that address basic questions
about in vivo cell population dynamics and evolution, as well as more detailed questions involving the immunolog-
ical mechanisms underlying affinity maturation.

Control of the immune response is another area ripe for modeling. What determines the intensity of a response? How
is the response shut off when the antigen is eliminated? Feedback mechanisms may exist to control the response
intensity, response length, and type of response (cellular or antibody). Some models of a basic feedback mechanism
involving two types of helper T cells, TH1 and TH2, have been developed; others are needed. Regulatory mechanisms
involve interactions among many cell populations that communicate by direct cell-cell contact and through the
secretion of cytokines. Diagrams representing the elements of regulatory schemes commonly have scores of ele-
ments. Because of the complexities involved, theorists have an opportunity to lead experimentation by providing
suggestions as to what needs to be measured and how such measurements can be used to provide an insightful view
of possible control mechanisms.

A fundamental feature of the immune system is its diversity. Successful recognition of antigens appears to require a
repertoire of at least 105 different lymphocyte clones. The diversity of the immune system has challenged experimen-
talists, and many recent advances have come from developing experimental models with limited immune diversity.
However, models based on ecological concepts may provide insights into the control of clonal diversity, and mod-
ern computational methods now make it practical to consider models with tens of thousands of clones. Thus, it is
possible to develop models that start to approach the size of small immune systems. Simulations have suggested that
from simple rules of cell response, emergent phenomena arise that may have immunological significance. The
challenge in using computation is to develop models that address important questions, are realistic enough to
capture the relevant immunology, and yet are simple enough to be revealing.

SOURCE: Reprinted by permission from S.A. Levin, B. Grenfell, A. Hastings, and A.S. Perelson, “Mathematical and Computational
Challenges in Population Biology and Ecosystems Science,” Science 275(5298):334-343. Copyright 1997 AAAS. (References omitted.)
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Box 5.14
Computational Modeling of the Heart

. . . [Integrative cardiac modelling has sought] to integrate data and theories on the anatomy and structure, hemody-
namics and metabolism, mechanics and electrophysiology, regulation and control of the normal and diseased heart.
The challenge of integrating models of many aspects of such an organ system, including its structure and anatomy,
biochemistry, control systems, hemodynamics, mechanics and electrophysiology, has been the theme of several
workshops over the past decade or so.

Some of the major components of an integrative cardiac model that have been developed include [models of]
ventricular anatomy and fiber structure, coronary network topology and hemodynamics, oxygen transport and sub-
strate delivery, myocyte metabolism, ionic currents, impulse propagation, excitation-contraction coupling, neural
control of heart rate and blood pressure, cross-bridge cycling, tissue mechanics, cardiac fluid dynamics and valve
mechanics, and ventricular growth and remodelling. . . .

. . . . [T]hese models can be extended and integrated with others [by considering the role in] several major functional
modules . . . as shown in the figure below. . . . They include:

• Coronary artery anatomy and regional myocardial flows for substrate and oxygen delivery.
• Metabolism of the substrate for energy metabolism, fatty acid and glucose, the tricarboxylic acid (TCA) cycle, and
oxidative phosphorylation.
• Purine nucleoside and purine nucleotide metabolism, describing the formation of ATP and the regulation of its
degradation to adenosine in endothelial cells and myocytes, and its effects on coronary vascular resistance.
• The transmembrane ionic currents and their propagation across the myocardium.
• Excitation-contraction coupling: calcium release and reuptake, and the relationships between these and the
strength and extent of sarcomere shortening.
• Sarcomere dynamics of myofilament activation and cross-bridge cycling, and the three-dimensional mechanics
of the ventricular myocardium during the cardiac cycle.
• Cell signalling and the autonomic control of cardiac excitation and contraction.

. . . While [Figure 5.14.1] does show different scales in the structural hierarchy, it emphasizes functional integration, and
thus it is not surprising that the majority of functional interactions take place at the scale of the single cell. . . . [A
functionally integrated] model of functionally interacting networks in the cell can be viewed as a foundation for structur-
ally coupled models that extend to multicellular networks, tissue, organ and organ system. But it can also be viewed as a
focal point into which feed structurally based models of protein function and subcellular anatomy and physiology.

. . . Predictive computational models of various processes at almost every individual level of the hierarchy have been
based on physicochemical first principles. Although important insight has been gained from empirical models of
living systems, models become more predictive if the number of adjustable parameters is reduced by making use of
detailed structural data and the laws of physics to constrain the solution. These models, such as molecular dynamics
simulations, spatially coupled cell biophysical simulations, tissue micromechanical models and anatomically based
continuum models are usually computationally intensive in their own right. . . . This will require a computational
infrastructure that will allow us to integrate physically based biological models that span the hierarchy from the
dynamics of individual protein molecules up to the regional physiological function of the beating heart. . . .

Investigators have developed large-scale numerical methods for ab initio simulation of biophysical processes at the
following levels of organization: molecular dynamics simulations based on the atomic structure of biomolecules;
hierarchical models of the collective motions of large assemblages of monomers in macromolecular structures;
biophysical models of the dynamics of cross-bridge interactions at the level of the cardiac contractile filaments;
whole-cell biophysical models of the regulation of muscle contraction; microstructural constitutive models of the
mechanics of multicellular tissue units; continuum models of myocardial tissue mechanics and electrical impulse
propagation; and anatomically detailed whole organ models.

They have also investigated methods to bridge some of the boundaries between the different levels of organization.
We [McCulloch and Huber] and others have developed finite-element models of the whole heart, incorporating
microstructural constitutive laws and the cellular biophysics of thin filament activation. Recently, these mechanics
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models have been coupled with a non-linear reaction-diffusion equation model of electrical propagation incorporat-
ing an ionic cellular model of the cardiac action potential and its regulation by stretch. At the other end of the
hierarchy, Huber has recently developed a method, the Hierarchical Collective Motions method, for integrating
molecular dynamics simulation results from small sections of a large molecule into a quasi-continuum model of the
entire molecule.

FIGURE 5.14.1 Some major functional subsystems of an integrated heart model and their hierarchical relationships from
cell to tissue to organ and cardiovascular system.

SOURCE: A.D. McCulloch and G. Huber, “Integrative Biological Modelling in Silico,” pp. 4-19 in ‘In Silico’ Simulation of
Biological Processes No. 247, Novartis Foundation Symposium, G. Bock and J.A. Goode, eds., John Wiley & Sons Ltd.,
Chichester, UK, 2002. Text and figure reproduced with permission from John Wiley & Sons Ltd. (References omitted.)
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95R.L. Winslow, D.F. Scollan, A. Holmes, C.K. Yung, J. Zhang, and M.S. Jafri, “Electrophysiological Modeling of Cardiac
Ventricular Function: From Cell to Organ,” Annual Reviews of Biomedical Engineering 2:119-155, 2002.

96P.J. Hunter, “The IUPS Physiome Project: A Framework for Computational Physiology,” Progress in Biophysics and Molecular
Biology 85(2-3):551-569, 2004.

Box 5.15
Illustrations of Functional Models of Cellular Behavior

Example 1: Results from Single-cell Modeling

Winslow et al. have developed and applied a model of the normal and failing canine ventricular myocyte to
analysis of the functional significance of changes in gene expression during tachycardia pacing-induced heart
failure. Using the data on mRNA and protein expression levels cited above, these investigators defined a minimal
model of end-stage heart failure as (1) 33 percent reduction of IK1; (2) 66 percent reduction of Ito1; (3) 68 percent
reduction of the SR [sacroplasmic reticulum] Ca2+-ATPase; and (4) 75 percent upregulation of the Na+-Ca2+

exchanger. They incorporated these changes sequentially into the computational model and used the model to
predict the functional consequences of each alteration of gene expression in this disease. Results show that the
minimal HF [heart failure] model can reproduce the increased APD [action potential duration] observed in
failing myocytes relative to normal myocytes. The minimal model can also account for the reduced amplitude
and slowed relaxation of the Ca2+ transients observed in failing versus normal myocytes. Most importantly,
model simulations reveal that reduced expression of the outward potassium currents Ito1 and IK1 have relatively
little impact on APD, whereas altered expression of the Ca2+ handling proteins has a profound impact on APD.

These results suggested a strong interplay between APD and the properties of Ca2+ handling in canine myo-
cytes. The nature of this interplay was examined in the model. The model indicated that reductions in expres-
sion level of the SR Ca2+-ATPase and increased expression of the Na+-Ca2+ exchanger both contribute to a
reduction of JSR Ca2+ load. This reduction in the junctional SR (JSR) Ca2+ load in turn produces a smaller Ca2+

release from SR, reduced subspace Ca2+ levels, and therefore reduced Ca2+-mediated inactivation of the Ca2+

current. The enhanced Ca2+ current then contributes to prolongation of APD. This is an important insight,
because identifies the heart failure-induced reduction in JSR Ca2+ load as a critical factor in APD prolongation
and in the accompanying increased risk of arrhythmias related to repolarization abnormalities.

Analyses of the type described above are likely to become increasingly important in determining the function-
al role of altered gene and protein expression in various disease states as more comprehensive large-scale data
on genome and protein expression in disease become available.

its contractile behavior.95 In particular, Winslow has used this model to show that the reduced contrac-
tility (i.e., reduction in the strength with which a ventricular muscle contracts, which is associated with
heart failure) is caused largely by changes in the calcium ion currents in those cells, rather than changes
in potassium ion currents as was widely speculated before this work (Example 1 in Box 5.15). Such an
insight suggests that the development of drugs to cope with heart failure would thus be better focused
on those that can regulate calcium flow. Examples 2 and 3 in Box 5.15 illustrate some of the scientific
insights that can be gained with a computational model integrated across functional and structural
lines.

Integrating these various perspectives on the heart (and other organs as well) is the mission of the
Physiome Project, which seeks to construct models that incorporate the detailed anatomy and tissue
structure of an organ in a way that allows the inclusion of cell-based models and spatial structure and
distribution of proteins. The Physiome project has developed a computational framework for integrat-
ing the electrical, mechanical, and biochemical functions of the heart:96
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• The underlying anatomical descriptions are based on finite element techniques, and orthotropic
constitutive laws based on the measured fiber-sheet structure of myocardial tissue drive the dynamics
of the large deformation soft-tissue mechanics involved.

• Patterns of electrical current flow in the heart are computed using reaction-diffusion equations
on a grid of deforming material points which access systems of ordinary differential equations repre-
senting the cellular processes underlying the cardiac action potential; these result in representations of
the activation wavefronts that spread around the heart and initiate contraction.

• Coronary blood flow is computed based on the Navier-Stokes equations in a system of branching
blood vessels embedded in the deforming myocardium and the delivery of oxygen and metabolites is
coupled to the energy-dependent cellular processes.

These models of different cardiac phenomena have been been implemented with “horizontal”
integration of mechanics, electrical activation and metabolism, together with “vertical” integration from
cell to tissue to organ. Thus, these models can be said to deconstruct an organ into a set of (submodels
for) constituent functions, with explicit feedback and connection between them represented in the
overall model of the whole organ.

Results from Integrated Modeling (Examples 2 and 3)

In the clinical arrhythmogenic disorder long-QT syndrome, a mutation in a gene coding for a cardiomyocyte
sodium or potassium-selective ion channel alters its gating kinetics. This small change at the molecular level
affects the dynamics and fluxes of ions across the cell membrane and thus affects the morphology of the
recorded electrocardiogram (prolonging the QT interval and increasing the vulnerability to life-threatening
cardiac arrhythmia). Such an understanding could not be derived by considering only the single gene, chan-
nel, or cell; it is an integrated response across scales of organization. A hierarchical integrative simulation
could be used to analyze the mechanism by which this genetic defect can lead to sudden cardiac death, for
example, by exploring the effects of altered repolarization on the inducibility and stability of reentrant activa-
tion patterns in the whole heart. A recent study made excellent progress in spanning some of these scales by
incorporating a Markov model of altered channel gating, based on the structural consequences of the genetic
defect in the cardiac sodium channel, into a whole-cell kinetic model of the cardiac action potential that
included all the major ionic currents.

. . . [It] is becoming clearer that mutations in specific proteins of the cardiac muscle contractile filament system
lead to structural and developmental abnormalities of muscle cells, impairment of tissue contractile function,
and the eventual pathological growth (hypertrophy) of the whole heart as a compensatory response. In this
case, the precise physical mechanisms at each level remain speculative, although much detail has been
elucidated recently, so an integrative model will be useful for testing various hypotheses regarding the mech-
anisms. The modeling approach could be based on the same integrative paradigm commonly used by exper-
imental biologists, in which the integrated effect of a specific molecular defect or structure can be analysed
using techniques such as in vivo gene targeting.

SOURCE: R.L. Winslow, D.F. Scollan, A. Holmes, C.K. Yung, J. Zhang, and M.S. Jafri, “Electrophysiological Modeling of Cardiac
Ventricular Function: From Cell to Organ,” Annual Review of Biomedical Engineering 2:119-156, 2000. Adapted by permission from Annual
Review of Biomedical Engineering. (References and citations omitted.)
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5.4.5 Neuroscience

In recent years, neuroscience has expanded its horizons beyond the microstructure of the brain—
neurons, synapses, neurotransmitters, and the like—to focus on the brain’s large-scale cognitive archi-
tecture. Drawing on dramatic advances in mapping techniques, such as functional magnetic resonance
imaging (MRI) and magnetoencephalography, neuroscientists hope to give a computational account of
precisely what each specialized region of the brain is doing and how it interacts with all the other active
regions to produce high-level thought and behavior.

5.4.5.1 The Broad Landscape of Computational Neuroscience

Neuroscience seeks to probe the details of the brain and the mechanisms by which the nervous
systems develops, is organized, processes information, and establishes mental abilities. Research in
neuroscience spans many levels of organization, from atomic and molecular events on the order of one-
tenth to one nanometer, up to the entire nervous system on the order of a meter or more. In addition,
there are on the order of 1011 neurons and thousands to tens of thousands of synapses per neuron.

Information processing in the brain occurs through the interactions and spread of chemical and
electrical signals both within and among neurons. Acting within the extensive but intricate architecture
of the neurons and their interconnections, the mechanisms are nonlinear and span a wide range of
spatial and temporal scales.97  Understanding how the nervous system and brain work thus requires an
interdisciplinary approach to the challenging multiscale integration of experimental data, computa-
tional data, and theory.

It is helpful to describe the nervous system’s functional processes and their mechanisms at several
different levels of detail, depending on the goal of a given effort. Table 5.3 and Figure 5.12 describe the
numerous spatial and temporal scales relevant to neuroscience research, and provide some indication
of the complexity of such research.

To illustrate, a low level of analysis might involve consideration of individual neurons. In this
analysis, functional properties of neurons such as electronic structure, nerve cell connections (syn-
apses), and voltage-gated ion channels are important. At a higher level, it is recognized that individual
neurons connect in networks—an analysis at this level examines how individual neurons interact to
form functioning circuits. The mathematics of dynamic systems and visual neuroscience are notably
relevant at this level. At a still higher level, individual networks—each with its own specific architecture
and information-processing capabilities—interact to form neural nets and carry out cognition, speech

TABLE 5.3 Scales of Neuroscience Research

Spatial Scale Component

1 meter Central nervous system
10 centimeters Systems
1 centimeter Maps
1 millimeter Networks
100 microns Neurons
1 micron Synapses
10 angstroms Molecules

97N.T. Carnevale and S. Rosenthal, “Kinetics of Diffusion in a Spherical Cell: I. No Solute Buffering,” Journal of Neuroscience
Methods 41(3):205-216, 1992.
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FIGURE 5.12 Temporal and spatial scales of neuroscience research. SOURCE: Courtesy of Christof Koch, Caltech.

perception, and imaging. At this level, computational analysis of nervous system networks and
(connectionist) modeling of psychological processes is the primary focus.

Computational neuroscience provides the basis for testing models of the nervous system’s func-
tional processes and their mechanisms, and computational modeling at several levels of detail is impor-
tant, depending on the purposes of a given effort. Box 5.16 describes simulators that operate at different
levels of detail for different purposes.

5.4.5.2 Large-scale Neural Modeling98

To better understand a system as complex as the human brain, it is necessary to develop techniques
and tools for supporting large-scale, similarly complex simulations. Recent advances in understanding
how single neurons represent the world,99  how large populations of neurons cooperate to build more
complex representations,100  and how neurobiological systems compute functions over their representa-
tions make large-scale neural modeling a highly anticipated next step.

98Section 5.4.5.2 is based largely on material supplied by Chris Eliasmith, University of Waterloo, September 7, 2004.
99F. Rieke, D. Warland, R. de Ruyter van Steveninick, and W. Bialek, Spikes: Exploring the Neural Code, MIT Press, Cambridge,

MA, 1997; D. Warland, M. Landolfa, J. Miller, and W. Bialek, “Reading Between the Spikes in the Cercal Filiform Hair Receptors
of the Cricket,” Analysis and Modeling of Neural Systems, F. Eeckman, ed., Kluwer Academic Publishers, Boston, MA, 1992.

100L. Abbott and T. Sejnowski, Neural Codes and Distributed Representations: Foundations of Neural Computation, MIT Press,
Cambridge, MA, 1999; R.S. Zemel, P. Dayan, and A. Pouget, “Probabilistic Interpretation of Population Codes,” Neural Computa-
tion 10, 1998.
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Box 5.16
 Simulators for Computational Neuroscience

The nervous system is extraordinarily complex. A single cubic centimeter in the brain’s cerebral cortex con-
tains on the order of 5 billion synapses, and these differ in size and shape. The transmission of chemical
signals is very complex, with many molecules involved, and is an area of intense study. With the introduction
of more powerful computer hardware and advances in algorithms, quantitative modeling and realistic simu-
lation in three-dimensions of the interplay of biological ultrastructure and neuron physiology have become
possible and have provided insight into the variability in signaling and plasticity of the system.

To deal with the complexity, multiscale range of space and time, and nonlinearity of neural phenomena, a
number of specialized computational tools have been developed.

MCell (a Monte Carlo simulator of cellular microphysiology) simulates individual connections or synapses
between neurons and groups of synapses. MCell simulations provide insights into the behavior and variability
of real systems comprising finite numbers of molecules interacting in spatially complex environments. MCell
incorporates high-resolution physical structure into models of ligand diffusion and signaling and thus can take
into account the large complexity and diversity of neural tissue at the subcellular level. Monte Carlo algo-
rithms are used to simulate ligand diffusion using three-dimensional random walk movements for individual
molecules. Effector sites and surface positions are mapped spatially, and the encounters during ligand diffu-
sion are detected. Bulk solution rate constants are converted into Monte Carlo probabilities so that the diffus-
ing ligands can undergo stochastic chemical interactions with individual binding sites such as receptor pro-
teins, enzymes, and transporters.

GENESIS (the General Neural Simulation System) is a tool for building structurally realistic simulations of
biological neural systems that quantitatively embed what is known about the anatomical structure and phys-

Recent theoretical work has suggested that it is possible to generally characterize the dynamics,
representation, and computational properties of any neural population (Figure 5.13).101  Applications of
these methods have been used successfully to generate models of working memory, rodent naviga-
tional tasks (path integration; see Figure 5.14), eye position control, representation of self-motion, lam-
prey and fish motor control, and deductive reasoning (Figure 5.15).

Box 5.17 illustrates the use of computational modeling to understand how dopamine functions in
the prefrontal cortex. The box also illustrates the often-present tension between those who believe that
simple models (in this case, advocates of a connectionist model) can provide useful insight and those
who believe that simple models cannot capture the implications of the complex dynamics of individual
neurons and their synapses and that the addition of considerable biophysical and physiological detail is
needed for real understanding. Many of these models require large numbers of individual, spiking
neurons to be simulated concurrently, which results in significant computational demands. In addition,
calculating the necessary connection weights requires the inversion of extremely large matrices. Thus,
high-performance computing resources are essential for expanding these simulations to include more
neural tissue, and hence more complex neural function.

101C. Eliasmith and C.H. Anderson, Neural Engineering: Computation, Representation and Dynamics in Neurobiological Systems,
MIT Press, Cambridge, MA, 2003.
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iological characteristics of the neural system of interest. GENESIS reflects the modeling perspective that spatial
organization and structure are important for understanding neural function. GENESIS is organized around
neurons constructed out of components such as compartments (short sections of cellular membrane) and
variable conductance ion channels that receive inputs, perform calculations on them, and then generate
outputs. Neurons in turn can be linked to form neural circuits. GENESIS originally was used largely for realistic
simulations of cortical networks and of the cerebellar Purkinje cell and, more recently, to interconnect cell
and network properties to biochemical signaling pathways.

NEURON is similar to GENESIS in many ways, but contains optimizations that enable it to run very fast on
networks in which cable properties play a crucial role, that involve system sizes ranging from parts of single
cells to small numbers of cells, and that involve complex branched connections. Furthermore, the perfor-
mance of NEURON degrades very slowly with increasing complexity of morphology and membrane mecha-
nisms, and it has been applied to very large network models (104 cells with six compartments each and a total
of 106 synapses in the network. Using a high-level language known as NMODL, NEURON has also been
extended to investigate new kinds of membrane channels. The morphology and membrane properties of
neurons are defined with an object-oriented interpreter, allowing for voltage control, manipulation of current
stimuli, and other biological parameters.

SOURCES: For more information, see http://www.mcell.cnl.salk.edu; J.R. Stiles and T.M. Bartol, Jr., “Monte Carlo Methods for Simulating
Realistic Synaptic Microphysiology Using MCell,” pp. 87-127 in Computational Neuroscience: Realistic Modeling for Experimentalists, E. de
Shutter, ed., Boca Raton, FL, CRC Press, 2000; J.R. Stiles, T.M. Bartol, Jr., E.E. Salpeter, M.M. Salpeter, T.J. Sejnowski, “Synaptic Variability:
New Insights from Reconstructions and Monte Carlo Simulations with MCell,” pp. 681-731 in Synapses, W.M. Cowan, T.C. Sudhof, C.F.
Sudhof, eds., Johns Hopkins University Press, Baltimore, 2001; J.M. Bower, D. Beeman, and M. Hucka, “The GENESIS Simulation System,”
The Handbook of Brain Theory and Neural Networks, Second Edition, M.A. Arbib, ed., MIT Press, Cambridge, MA, 2003, pp. 475-478,
available at http://www.genesis-sim.org/GENESIS/hbtn2e-bower-etal/hbtn2e-bower-etal.html; M.L. Hines and N.T. Carnevale, “The NEU-
RON Simulation Environment,” Neural Computation 9(6):1179-1209, 1997, available at www.neuron.yale.edu/neuron/papers/nc97/
nsimenv.pdf.

5.4.5.3 Muscular Control

Muscles are controlled by action potentials—brief, rapid depolarizations of membranes in nerves
and muscles. The timing of action potentials transmitted from motor neurons coordinates the contrac-
tion of the muscles they innervate. Rhythmic activity of the nervous system often takes the form of
complex bursting oscillations in which intervals of action potential firing and quiescent intervals of
membrane activity alternate. The relative timing of action potentials generated by different neurons is a
key ingredient in the function of the nervous system.

Changes in the electrical potential of membranes are mediated by ion channels that selectively
permit the flow of ions such as sodium, calcium, and potassium across the membrane. Individual
channels are protein complexes containing membrane-spanning pores that open and close randomly at
rates that depend on many factors. Cellular and network models of membrane potential represent these
systems as electrical circuits in which voltage gated channels function as “nonlinear” resistors whose
conductance depends on membrane potential. Information is transmitted from one neuron to another
through synapses where action potentials trigger the release of neurotransmitters that bind to channels
of adjacent cells, stimulating changes in the ionic currents of these cells. (The action potential is the basic
neuronal signaling “packet” of ionic flow through a cell membrane.)

The most basic model of this mechanism is the Hodgkin-Huxley model, which refers to a set of
differential equations that describe the action potential.102  Specifically, the Hodgkin-Huxley equations

102A.L. Hodgkin and A.F. Huxley, “A Quantitative Description of Membrane Current and Its Application to Conduction and
Excitation in Nerve,” Journal of Physiology 117(4):500-544, 1952.
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express quantitatively the feedback entailed in the relationship between changing ionic flows and
changing membrane potential. Originally based on data collected from experiments on the giant axon of
the squid, the physical model used is that of a membrane separating two infinite regions, each of which
is homogeneous on its side of the membrane.

In the nervous system, different kinds of ions pass through the membrane, and the flow of ions
through these channels is voltage dependent. In the model, a circuit is used to represent the ion flows
and potential differences that drive ion flow. The semipermeable cell membrane separating the interior
of the cell from the extracellular liquid is modeled as a capacitor, and each ion channel is modeled as a
separately variable resistor. In series with each variable resistor is a battery representing the Nernst
potential arising from the difference in ion concentration on each side of the membrane. All of these
components are connected in parallel and are driven by a time-varying current source to ground. If a
time-varying input current is injected into the cell, it may add further charge on the capacitor, or the
added charge may leak through the channels in the cell membrane. Because of active ion transport
through the cell membrane, the ion concentration inside the cell is different from that in the extracellular
liquid. The potential generated by the difference in ion concentration is represented by a battery.

Elementary circuit theory allows the construction of a set of differential equations relating the
different ion currents to the potential difference across the membrane. Using this set of differential
equations, certain essential features of neural behavior can be modeled. For example, assuming appro-
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FIGURE 5.13 A generic neural subsystem. The diagram depicts the mathematical analysis of a neural subsystem
and its mapping onto the biological system—a population of neurons. Labels outside the gray boxes indicate the
relevant biological structures and processes. Neural action potentials (spikes) coming from a previous neural
population generate weighted post-synaptic currents (PSCs) in the dendrites of the neurons to which they are
connected. The subsequent voltage changes travel to the neural somata, where action potentials are generated,
resulting in output spikes. Because the input and output are neural spikes, this kind of subsystem can be linked to
others like it, permitting the construction of larger, more complex neural circuits (see Figure 5.15 for an example).
Note that labels inside the gray boxes are generated based on understanding of the purpose of the neural system
being modeled and on current understanding of neural representation (encoding), computation (decoding), and
dynamics (dynamics matrices and hsyn). Building simulations using these methods leads to a better understanding
of how neural systems perform the complex functions they do. SOURCE: Courtesy of Chris Eliasmith, University
of Waterloo.
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priate parameter values, a constant input current larger than a certain critical value and turned on at a
given instant of time results in the potential difference across the membrane taking the form of a regular
spike train—which is reminiscent of how a real neuron fires. More realistic current inputs (e.g., stochas-
tic ones) result in a much more realistic-looking output.

Despite lack of information about much of the cellular and molecular basis of neuronal excitation at
the time, Hodgkin and Huxley were able to provide a relatively accurate quantitative description of
how an action potential was generated by voltage-dependent ionic conductivities. The Hodgkin-Huxley
model provided the basis for research for more than five decades, spinning off a new field of neuro-
physiology: in large part, this field rests on the foundation created by their model. Recent research on
membrane ion channels can be related directly to the seminal ideas and (more importantly) precise
mechanism that their model described.

The “plain vanilla” Hodgkin-Huxley model is still interesting today. For example, a recent study
demonstrated previously unobserved dynamics in the Hodgkin-Huxley model, namely, the existence of
chaotic solutions in the model with its original parameters.103  The significance of chaos in this context is
that the excitability of a neural membrane with respect to firing is likely to be more complex than can be
explained by a simple sub- or super-threshold potential.

Simulation and mathematical analysis of models have become essential tools in investigations of
the complicated processes underlying rhythm generation in the nervous system. There are many types
of channels and synapses. The number of channels and synapses and their locations distinguish differ-
ent types of neurons from one another. Simulation of networks consisting of model neurons with

FIGURE 5.14 Rodent navigation. These figures depict the behavior of a neurally realistic simulation of the path
integrator in a rat. The simulation was generated by using a single (recurrent) generic neural subsystem. (A) When
the simulation is given random noise, it spontaneously generates a stable, localized bump of neural activity over the
neural sheet, which represents the rat’s current location. This demonstrates that a stable attractor (a widely accepted
model of how the rat’s path integrator is organized) has been implemented. (B) This model also implements control
(i.e., updating of the current location based on the rat’s motion) of the path integrator in a neurally plausible way.
Here, straight-line motion in a rightward direction is shown. (C) The model correctly integrates the circular path of
the rat, demonstrating that it can path integrate in any direction that the rat might move. This simulation has very
little error compared to the simulations of past models. SOURCE: Chris Eliasmith, University of Waterloo, personal
communication, September 7, 2004, and A. Samsonovich and B.L. McNaughton, “Path Integration and Cognitive
Mapping in a Continuous Attractor Model,” Journal of Neuroscience 17(15):5900-5920, 1997.

A B C

103J. Guckenheimer and R.A. Oliva, “Chaos in the Hodgkin-Huxley Model,” SIAM Journal on Applied Dynamical Systems 1(1):105-
114, 2002.
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specified conductances and synapses enables researchers to test their intuitions regarding how these
networks function. Simulations also lead to predictions of the effects of neuromodulators and disorders
that affect the electrical excitability of the systems. Nonetheless, simulation alone is not sufficient to
determine the information we would like to extract from these models. The models have large numbers
of parameters, many of which are difficult or impossible to measure, and the goal is to determine how
the system behavior depends on the values of all of these parameters.

Dynamical systems theory provides a conceptual framework for characterizing rhythms. This theory
explains why there are only a small number of dynamical mechanisms that initiate or terminate bursts
of action potentials, and it provides the foundations for algorithms that compute parameter space maps
delineating regions with different dynamical behaviors. The presence of multiple time scales is an
important ingredient of this analysis because the rates at which different families of channels respond to
changes in membrane potential or ligand concentration vary over several orders of magnitude.

Figure 5.16 illustrates this type of analysis using a model for bursting in the pre-Bötzinger complex,
a neural network in the brain stem that controls respiration. The first panel shows voltage recordings
from intracellular recordings of a medullar slice from neonatal rats. Butera and colleagues measured
conductances in this preparation and constructed a model for this system.104  Simulations of the burst-
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FIGURE 5.15 System for learning and performing deductive reasoning. The graphic describes the proposed sys-
tem used during solution of the Wason card selection task; see P.C. Wason and P.N. Johnson-Laird, Psychology of
Reasoning: Structure and Content, Harvard University Press, Cambridge, MA, 1972. This task requires determining
when a logical rule is valid or invalid, and so is a form of deductive reasoning. Humans perform notoriously badly
on many versions of this task, but well on other versions. This kind of context/content sensitivity is captured by
this model; see C. Eliasmith, “Learning Context Sensitive Logical Inference in a Neurobiolobical Simulation,” pp.
17-19 in Compositional Connectionism in Cognitive Science: Papers from the AAAI Fall Symposium, S.D. Levy and R.
Gayler, Program Co-chairs, October 21-24, 2004, The AAAI Press, Arlington, VA, Technical Report FS-04-03, 2004.
The depicted large-scale circuit consists of 14 neural subsystems, distributed across frontal and ventral areas of the
brain. This is a good example of the degree of complexity that can be built into a neurally realistic simulation using
these new techniques. Populations a-d learn and apply the appropriate context for interpretation of the rule (R)
encoded by population e. Populations f and g apply the relevant transformation (T) to the rule, giving the current
answer (A). Populations h, k, and l determine the degree of correctness or incorrectness of the suggested answer
(either given the correct answer, or given a reward or punishment signal), resulting in an error signal e. Popula-
tions m and n provide a guess at the best possible transformation. This guess and the error signal are integrated
into the learning algorithm. SOURCE: Courtesy of Chris Eliasmith, University of Waterloo.

104R.J. Butera, Jr., J. Rinzel, and J.C. Smith, “Models of Respiratory Rhythm Generation in the Pre-Bötzinger Complex. I.
Bursting Pacemaker Neurons,” Journal of Neurophysiology 82(1):382-397, 1999.
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Box 5.17
Computational Perspectives on Dopamine Function in the Prefrontal Cortex

Connectionist Models of Dopamine Neuromodulation

A long-held hypothesis suggests that catecholamine neurotransmitters, including dopamine (DA), modulate target
neuron responses, by increasing their signal-to-noise (SNR) ratio (i.e. by increasing the differentiation between back-
ground or baseline firing rates and those that are evoked by afferent stimulation). For example, studies in the striatum
showed that DA potentiated the response of target neurons to the effect of both excitatory and inhibitory signals.
However, the precise biophysical mechanisms underlying these effects were not well understood. Moreover, the
view that DA acts as a modulator in the pre-frontal cortex (PFC) has been controversial, because, for many years, DA
application or stimulation of DA neurons reliably inhibited spontaneous PFC activity. Thus, many investigators
argued that DA served as an inhibitory transmitter in PFC.

The first explicit computational models of the neuromodulatory function of catecholamines, and DA in particular,
were developed within the connectionist framework, and focused on their effects on information processing. Al-
though such models do not typically incorporate biophysical detail, by virtue of their simplicity they have the
advantage of simulating system level function and performance in a wide variety of cognitive tasks. Within this
framework, DA effects were simulated as a change in the slope (or gain) of the sigmoidally shaped input-output
activation function of processing units. Thus, in the presence of DA, both the excitatory and inhibitory influences of
afferent inputs are potentiated. Computational analyses showed that this modulatory function would not improve the
SNR characteristics of single neurons, but could do so at the network level. Models implementing these ideas proved
useful for accounting for a wide range of phenomena, including the pharmacological effects of DA on performance
in tasks thought to rely on PFC and the effects of disturbances of DA in schizophrenia.

Biophysically Detailed Models

In recent work, computational studies have focused on more biophysically detailed accounts of DA action within
PFC. Models by Durstewitz et al. and Brunel and Wang, all include data on the different biophysical effects of DA on
specific cellular processes. These models have been used to simulate the dynamics of activity in networks that
closely parallel the patterns observed in vivo within PFC. . . .

These models synthesize the rapidly growing, but often confusing literature on the neurophysiology of DA within
PFC. For example, the biophysical effects of DA are shown to produce a suppressive influence on spontaneous
activity, explaining its apparent inhibitory actions, while at the same time causing an enhanced excitability in
response to afferent drive. Furthermore, the selective enhancement of inputs from recurrent versus external afferents
provides a mechanism for stabilizing sustained activity patterns within PFC that are resistant to interference from
external inputs. These computational analyses support the characterization of DA as a modulatory neurotransmitter,
rather than a classical excitatory or inhibitory one, and explain its role in support sustained activity within PFC.

Strikingly, these models are remarkably consistent with the original hypothesis that DA increases SNR within the
PFC, and the expression of this idea in earlier connectionist models. The underlying assumption in both types of
models is that short-term storage of information in PFC occurs through recirculating activity within local recurrent
networks, which can be described as fixed-point attractor systems. DA activity helps to stabilize attractor states, both
by making high activity states more stable (active maintenance), and low activity states (spontaneous background
activity) less likely to spuriously transition to high activity states in the absence of strong afferent input. This is
accomplished by the concurrent potentiation of excitatory and inhibitory transmission, implemented as changes in
ion channel properties in biophysically detailed models and “summarized” as a change in the gain of the sigmoidal
activation function in connectionist models.

These mechanisms can be used to simulate the effects of DA on performance in cognitive tasks that rely on PFC
function. For example, in a task emphasizing the role of PFC in working memory, increased DA activation in the
Durstewitz et al. model enhanced the stability of PFC working memory representations by making them less suscep-
tible to interference from the intervening distractors. Within connectionist models, similar effects have been demon-
strated by changing the gain of the activation function, and simulating human performance in tasks known to rely on
PFC, tasks similar to those simulated by Durstewitz et al. and Brunel and Wang.

SOURCE: Reprinted by permission from J.D. Cohen, T.S. Braver, and J.W. Brown, “Computational Perspectives on Dopamine Function in
Prefrontal Cortex,” Current Opinion in Neurobiology 12(2):223-229. Copyright 2002 Elsevier. (References omitted.)
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FIGURE 5.16 Bursting in the pre-Botzinger complex.
Panel 1: Example of voltage-dependent properties of pre-Bötzinger complex (pre-BötC) inspiratory bursting neu-
rons. Traces show whole-cell patch-clamp recordings from a single candidate pacemaker neuron in the pre-BötC of
a 400-µm-thick neonatal rat transverse medullary slice with rhythmically active respiratory network. Recordings
in A and B were obtained respectively before and after block of synaptic transmission by low Ca2+ conditions
identical to those described in Johnson et al. (1994) (i.e., 0.2 mM Ca2+, 4 mM Mg2+, 9 mM K+ in slice bathing
solution). Patch pipette solution and procedure for whole-cell recording were as described previously (Smith et al.
1991, 1992). Before block of synaptic transmission, the neuron bursts in synchrony with the inspiratory phase of
network activity as monitored by the inspiratory discharge recorded on the hypoglossal (XII) nerve (Smith et al.
1991). After block of synaptic activity (30 minutes under low-Ca2+ conditions), the cell exhibits intrinsic voltage-
dependent oscillatory behavior. As the cell is depolarized by constant applied current, it undergoes a transition
from silence (baseline potential below 65 mV, left) to oscillatory bursting to beating (baseline potential above 45
mV, right). In the bursting regime, the burst period and duration decreases (see expanded time-base traces in B) as
the baseline membrane potential is depolarized. SOURCE: Reprinted by permission from R.J. Butera, Jr., J. Rinzel,
and J.C. Smith, “Models of Respiratory Rhythm Generation in the Pre-Bötzinger Complex. I. Bursting Pacemaker
Neurons,” Journal of Neurophysiology 82(1):382-397, 1999. Copyright 1999 American Physiological Society.

continued

PANEL 1
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PANEL 2

FIGURE 5.16 Continued
Panel 2: Gating and I-V characteristics of components of models 1 and 2. (A) spike-generating kinetics: m∞

3(V) and
h∞(V) of INa and n∞(V) and τn(V) of IK; note that h = 1 − n. (B1) gating characteristics of INaP: m∞(V), h∞(V), and τh(V)
(bold); left: y-axis scale for steady-state gating functions; right: y-axis scale for τh(V). (B2) I-V plots of INaP for
h = h∞(V) and h = 1.  First case results in a small window current at subthreshold potentials; second case corre-
sponds to INaP-h with complete removal of inactivation. (C1) gating characteristics of IKS: k∞(V) and τk(V) (bold);
left: y-axis scale for activation function; right: y-axis scale for τk(V). (C2) I-V plots of INaP + IKS for k = k∞(V) and
k = 0.  First case results in a small current at subthreshold potentials; second case corresponds to INaP with com-
plete removal of the opposing IKS.
SOURCE: Reprinted by permission from R.J. Butera, Jr., J. Rinzel, and J.C. Smith, “Models of Respiratory Rhythm
Generation in the Pre-Bötzinger Complex. I. Bursting Pacemaker Neurons,” Journal of Neurophysiology 82(1):382-
397, 1999. Copyright 1999 American Physiological Society.

ing rhythms displayed by this model are shown in the second panel. The third panel shows a map of the
simulated trajectory that illustrates the relationship of the bursting to slow and fast variables in the
system.

5.4.5.4 Synaptic Transmission

The intercellular signaling process of synaptic transmission is a much-studied problem. Much has
been learned about synaptic structure and function through the classical techniques of neuropharma-
cology, electron microscopy (EM) neuroanatomy, and electrophysiology, and correlation of the obser-
vations made through these various techniques has led to the development of computational models of
synaptic microphysiology. However, the scope of previous modeling attempts has been limited by
available computing power, modeling framework, and lack of high-resolution three-dimensional ultra-
structural data in an appropriate machine representation.
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PANEL 3

FIGURE 5.16 Continued
Panel 3: Projection of trajectory onto fixed points of fast subsystem. The axes are v: membrane potential; h: inacti-
vation of the HH sodium channel (there is also a persistent sodium channel in the model); and n: activation of the
HH “delayed rectifier” potassium channel. The voltage traces show the changes of voltage as a function of time.
The values of h and n also change with time. Think of v, n, h as the three coordinates of a point moving through
space. This plot depicts the path taken by this point in a bursting oscillation of the model. The curves are states at
which the motion through this space is particularly slow, becoming zero in the limit so that the slower currents in
the model are not allowed to change at all. SOURCE: Derived from Figure 4, Panel A3, in R.J. Butera Jr., J. Rinzel,
and J.C. Smith, “Models of Respiratory Rhythm Generation in the Pre-Bötzinger Complex. I. Bursting Pacemaker
Neurons,” Journal of Neurophysiology 82(1):382-397, 1999.  Copyright 1999 American Physiological Society. Used by
permission.

What has been missing is an appropriate set of tools for acquiring, building, simulating, and analyz-
ing biophysically realistic models of subcellular microdomains. Coggan et al. have developed and used
a suite of such computational tools to build a realistic computational model of nicotinic synaptic trans-
mission based on serial electron tomograms of a chick ciliary ganglion somatic spine mat.105

The chick ciliary ganglion somatic spine mat is a complex system with more than one type of
neurotransmitter receptor, possible alternative locations for transmitter release, and a tortuous synaptic
geometry that includes a spine mat and calyx-type nerve terminal. Highly accurate models of the
synaptic ultrastructure are obtained through large-scale, high-resolution electron tomography; com-

105J.S. Coggan, T.M. Bartol, E. Esquenazi, J.R. Stiles, S. Lamont, M.E. Martone, D.K. Berg, M.H. Ellisman, and T.J. Sejnowski,
“Evidence for Ectopic Neurotransmission at a Neuronal Synapse,” Science 309(5733):446-451, 2005.
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puter-aided methods for extracting accurate surfaces and defining in-silico representations of their
molecular properties; and physiological underpinnings from a variety of studies conducted by the
involved laboratories and from the literature.

These data are then used as the framework for advanced simulations using MCell running on high-
performance supercomputers as well as distributed or grid-based computational resources. This project
pushes development of tools for acquisition of improved large-scale tomographic reconstructions of
cellular interfaces down to supramolecular scales. It also drives improvements in the software tools
both for the distribution of molecular components within the surface models extracted from the tomo-
graphic reconstructions and for the deposition and retrieval of relevant information for the MCell
simulator (Box 5.18) in the tomography and Cell-Centered Database (CCDB) environment.

Realistic modeling of synaptic microphysiology (as illustrated in Figure 5.17) requires the following:

1. Acquisition of high-resolution, three-dimensional synaptic ultrastructure—this is accomplished
with serial EM tomography.

2. Segmentation of pre- and postsynaptic membrane from the tomographic volume—this is accom-
plished using the tracing tool in Xvoxtrace.

3. Three-dimensional reconstruction of the membrane surface topology to form a triangle mesh—
this is accomplished using the marching cubes isosurface extraction tool in Xvoxtrace.

4. Subdivision of the membrane surface meshes into physiologically relevant regions (e.g., spine
versus nonspine membrane and PSD [phosphorylation site domain] versus non-PSD regions)—this is
accomplished using the mesh tagging tool in DReAMM.

5. Placement of effector molecules (e.g., receptors, enzymes, reuptake transporters) onto membrane
surfaces with the desired distribution and density—this is accomplished using the MCell model de-
scription language (MDL). Effector distribution and density may be determined by labeling and imag-
ing studies.

6. Specification of the diffusion constant, quantity, and location of neurotransmitter release—this is
accomplished using MCell MDL.

7. Specification of the reaction mechanisms and kinetic rate constants governing the mass action
kinetics interaction of neurotransmitter and effector molecules—this is accomplished using MCell MDL.

8. Specification of what quantitative measures should be made during the simulation—this is ac-
complished using MCell MDL.

9. Simulation of the defined system—this is accomplished using the MCell compute kernel.
10. Analysis of the results at various points in the parameter space defined by the system—this is

accomplished using analysis tools of the investigator’s discretion.

Analysis of miniature excitatory postsynaptic currents (mEPSCs) recorded in electrophysiological
experiments shows that mEPSCs in the CG somatic spine mat occur in a broad spectrum of amplitudes,
rise times, and fall times. The differential kinetics and complementary distributions of α3 and α7
nAChRs are expected to lead to mEPSCs whose characteristics are highly dependent on the location of
neurotransmitter release within the spine mat. Realistic simulation makes it possible to explore and
quantify the degree to which this hypothesis is true and to make quantitative comparisons of the
simulation and electrophysiological results. Figure 5.18 summarizes the results of simulations designed
to explore the limits of mEPSC behavior by virtue of the choice of neurotransmitter release locations.
The results not only confirm the qualitative expectations at each site but also predict their quantitative
behavior, allowing fine discriminations to be made.

The process briefly outlined above represents a significant advance in the ability to create realistic
computational models of subcellular microdomains from actual cellular ultrastructure. The preliminary
results presented are just the beginning of exciting computational experiments that can now be per-
formed on the CG model in an effort to illuminate and inform further bench experiments. Among all of
the things learned, perhaps the most important is which of the physical characteristics of the CG are the
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Box 5.18
The MCell Simulator

MCell is a general Monte Carlo simulator of cellular microphysiology. MCell simulations provide insights into
the behavior and variability of real systems comprising finite numbers of molecules interacting in spatially
complex environments. MCell incorporates high-resolution physical structure into models of ligand diffusion
and signaling, and thus can take into account the large complexity and diversity of neural tissue at the subcel-
lular level.

MCell is based on the use of rigorously validated Monte Carlo algorithms to track the evolution of biochemical
events in time and three-dimensional space for individual ligand and effector molecules. That is, the Monte
Carlo approach is based on the use of random numbers and probabilities to effect the simulation of individual
cases of the system’s behavior.

In the MCell models used in neural signaling employing a Brownian dynamics random walk algorithm, indi-
vidual ligand molecules move according to a three-dimensional Brownian dynamics random walk and en-
counter membrane boundaries and effector molecules as they diffuse. Bulk solution rate constants are con-
verted into Monte Carlo probabilities so that the diffusing ligands can undergo stochastic chemical interactions
with individual binding sites such as receptor proteins, enzymes, and transporters. These interactions are
governed by user-specified reaction mechanisms.

The diffusion algorithms are grid-free, and the reaction algorithms are at the level of interactions between
individual molecules and thus do not involve solving systems of differential equations. Membrane boundaries
are represented as triangle meshes and may be of arbitrary complexity.

The Monte Carlo approach has certain important advantages over the finite element (FE) approach often used
to include spatial information in kinetic modeling. The FE approach divides three-dimensional space into a
regular grid of contiguous subcompartments, or voxels. It assumes well-mixed conditions within each voxel
and uses differential equations to compute fluxes between, and reactions within, each voxel. Mass action
equations are based on continuum processes and predict average concentrations. In large, simple volumes
with great numbers of a few types of molecules (e.g., reactions in a test tube), fluctuations are relatively small,
and knowledge of average concentrations accounts most of the interesting phenomena. However, synaptic
signaling is inherently discrete and stochastic because the number of molecules involved is small; hence, the
FE method will fail to describe accurately the biochemistry of synaptic signaling because these methods
provide only averaged data. Furthermore, complex cellular structures—such as the structures that characterize
the synapse—require that the voxel grid be very fine and irregular in shape, making an FE approach both
computationally expensive and difficult to implement.

MCell is very general because it includes a high-level model description language (MDL), which allows the
user to build subcellular structures and signaling pathways of virtually any configuration. MCell’s algorithms
scale smoothly from typical workstations to shared-memory multiprocessor machines to massively parallel
supercomputers.

SOURCE: For more information, see http://www.mcell.cnl.salk.edu; J.R. Stiles and T.M. Bartol, Jr., “Monte Carlo Methods for Simulating
Realistic Synaptic Microphysiology Using MCell,” pp. 87-127 in Computational Neuroscience: Realistic Modeling for Experimentalists, E. de
Schutter, ed., CRC Press, Boca Raton, FL, 2000; J.R. Stiles, T.M. Bartol, Jr., E.E. Salpeter, M.M. Salpeter, and T.J. Sejnowski, “Synaptic
Variability: New Insights from Reconstructions and Monte Carlo Simulations with MCell,” pp. 681-731 in Synapses, W. Cowan, T.C. Sudhof,
and C.F. Stevens, eds., Johns Hopkins University Press, Baltimore, MD, 2001. Discussion of the pros and cons of FE versus MC is from K.M.
Franks and T.J. Sejnowski, “Complexity of Calcium Signaling in Synaptic Spines,” BioEssays 24(12):1130-1144, 2002.
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FIGURE 5.17 Constructing the geometry of a chick ciliary ganglion (CG) somatic spine mat model. A serial EM
tomogram of a CG spine mat was obtained at ~4 nm per voxel resolution. The serial tomogram encompassed a
volume of ~27 mm3 (~3 µm × 3 µm × 3 µm).
(A) A typical slice through the tomographic volume together with hand-traced contours of the pre- and postsynap-
tic membranes. Tracing and segmentation of presynaptic (cyan) and postsynaptic (red) membrane contours gener-
ated using Xvoxtrace.
(B) Three-dimensional reconstruction of pre- and postsynaptic membrane surfaces as triangle meshes—view look-
ing down onto intracellular face of presynaptic membrane (visualized using DReAMM). The presynaptic mesh is
composed of 100,000 triangles and the postsynaptic mesh is composed of 300,000 triangles.
(C) Postsynaptic membrane surface—view of extracellular face of membrane (presynaptic membrane invisible).
(D) Completed model including postsynaptic membrane subdivided into distinct spines, PSD areas (black regions
with yellow borders), receptor molecules (tiny blue particles on membrane surface), and several neurotransmitter
release sites (red spheres). The membrane was subsequently populated with the desired distributions and densi-
ties of nicotinic acetylcholine receptor (nAChR) types and acetylcholine esterase (AChE) enzyme. Also visible in
(D) are several acetylcholine (ACh) vesicular release sites whose locations are most clearly illustrated in Figure
5.18A.
(E) Magnified view of the state of a simulation of synaptic transmission model as simulated by MCell. State of
system 300 ms after release of 5,000 molecules of acetylcholine (small green ellipsoids) is shown. α7 nAChR types
are shown in blue, and α3* nAChR types are shown in yellow (inactive receptors are semitransparent, and open
receptors are opaque).
SOURCE: Courtesy of Tom Bartol, Salk Institute, San Diego, California.
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FIGURE 5.18 Summary of synaptic transmission simulations.
(A) Location of selected transmitter release sites and their associated simulated mEPSC traces, each decomposed
into their α3 and α7 nAChR components. Each trace is the average of 100 simulations using MCell. Site 1 is located
at a PSD on nonspine membrane. This site is expected to have a large α3 response and a very small α7 response. At
the other extreme of behavior, sites 3 and 5 are placed over non-PSD spine membrane. Rich in α7 receptors and
poor in α3 receptors, these sites are expected to have large α7 responses and minimal α3 responses. The other sites
are placed at locations expected to give rise to mEPSCs of mixed nAChR origin.
(B) mEPSC amplitudes (decomposed into their α3 and α7 nAChR components) at each of 550 distinct vesicular
release sites. The mEPSC amplitudes are indicated by the diameter of the yellow spherical glyph and demonstrate
a strong dependence on location and underlying geometry.
SOURCE: Courtesy of Tom Bartol, Salk Institute, San Diego, CA.
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least constrained, are least understood, and have the greatest impact on synaptic function. Specifically,
the results clearly demonstrate that synaptic geometry, receptor distribution, and vesicle release loca-
tion each have a profound quantitative impact on the efficacy of the postsynaptic response. This means
that attention to accuracy in the model-building process must be a prime concern.

5.4.5.5 Neuropsychiatry106

The field of computational neuropsychiatry has been exploding with applications of large-deforma-
tion brain mapping technology that provide mechanisms for discovering neuropsychiatric disorders of
many types. The hippocampus is a region of the brain (depicted in green in Figure 5.19) that has been
implicated in schizophrenia and other neurodegenerative diseases such as Alzheimer’s. Using large-
deformation brain mapping tools in computational anatomy, researchers can define, visualize, and
measure the volume and shape of the hippocampus. These methods allow for precise assessment of
changes in hippocampal formation.

Researchers at the Center for Imaging Science (CIS) used mapping tools to compare the left and
right hippocampi (Figure 5.20) in 15 pairs of schizophrenic and control subjects. In the schizophrenic

FIGURE 5.19 The hippocampus in situ. SOURCE: Courtesy of Michael Miller, Johns Hopkins University.

106Section 5.4.5.5 is based on L. Wang, S.C. Joshi, M.I. Miller, and J.G. Csernansky, “Statistical Analysis of Hippocampal
Asymmetry in Schizophrenia,” Neuroimage 14(3):531-545, 2001; J.G. Csernansky, L. Wang, S. Joshi, J.P. Miller, M. Gado, D. Kido,
D. McKeel, et al., “Early DAT Is Distinguished from Aging by High-dimensional Mapping of the Hippocampus,” Neurology
55(11):1636-1643, 2000.
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subjects, deformations were localized to hippocampal subregions that send projections to the prefrontal
cortex. The deformations strongly distinguish schizophrenic subjects from control subjects. The pictures
indicate inward deformations by cooler colors, outward deformations by warmer colors, and little
deformation by a neutral green color. These results support the current hypothesis that schizophrenia
involves a disturbance of hippocampal-prefrontal connections.

In a separate study, CIS researchers also compared asymmetry between the left and right hippoc-
ampi. The left and the right side of normal brains develop at different rates. Structures on both sides of
the brain are similar, but not identical. This is normal brain asymmetry. If a different asymmetry pattern
exists in schizophrenic subjects, it may indicate a disturbance of the left-right balance during early
stages of brain development. Researchers found that the left hippocampus was narrower along the
outside edge than the right hippocampus. This asymmetry was similar in schizophrenic and normal
subjects (Figure 5.21, left image). However, further comparison revealed a significant difference in
asymmetry patterns of the hippocampal area called the subiculum (Figure 5.21, right image). People
with schizophrenia tend to have a more pronounced depression and a downward bend in the surface of
that structure.

As part of Washington University’s Healthy Aging and Senile Dementia (HASD) program, CIS
researchers have also applied brain mapping tools to assess the structure of the hippocampus in older
human subjects (depicted in Figure 5.22). They compared measurements of hippocampal volume and
shape in 18 subjects with early dementia of the Alzheimer type (DAT) with 18 healthy elderly and 15
younger control subjects. Hippocampal volume loss and shape deformities observed in subjects with
DAT distinguished them from both elderly and younger control subjects. The pattern of hippocampal

FIGURE 5.20 Left and right hippocampuses. SOURCE: Courtesy of Michael Miller, Johns Hopkins University.
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deformities in subjects with DAT was largely symmetric and suggested damage to the CA1 hippocam-
pal subfield.

Hippocampal shape changes were also observed in healthy elderly subjects, which distinguished
them from healthy younger subjects. These shape changes occurred in a pattern distinct from the
pattern seen in DAT and were not associated with substantial volume loss. These assessments indicate
that hippocampal volume and shape derived from computational anatomy large deformation brain
mapping tools may be useful in distinguishing early DAT from healthy aging.

5.4.6 Virology

Mathematical and computational methods are increasingly important to virology. For example, a
primary and surprising phenomenological aspect of HIV infection is that progression to AIDS usually

FIGURE 5.21 Asymmetry in schizophrenia. SOURCE: Michael Miller, Johns Hopkins University.

FIGURE 5.22 Hippocampal structure in normal aging (left) versus in Alzheimer’s disease patients (right). SOURCE:
Courtesy of Michael Miller, Johns Hopkins University.



190 CATALYZING INQUIRY

Box 5.19
Modeling the In Vivo Dynamics of HIV-1 Infection

Mathematical models of HIV infection and treatment have provided quantitative insights into the major bio-
logical processes that underlie HIV pathogenesis and helped establish the treatment of patients with combina-
tion therapy. This in turn has changed HIV from a fatal disease to a treatable one. The models successfully
describe the changes in viral load in patients under therapy and have yielded estimates of how rapidly HIV is
produced and cleared in vivo, how long HIV-infected cells survive while producing HIV, and how fast HIV
mutates and evolves drug resistance. They have also provided clues into the process of T-cell depletion that
characterizes AIDS. The models have also provided means to rapidly screen antiviral drug candidates for
potency in vivo, thus hastening the introduction of new antiretroviral therapies.

On average, HIV takes about 10 years to advance from initial infection to immune dysfunction (or AIDS).
During this period the amount of virus measured in a person’s blood hardly changes. Because of this slow
progression and the unchanging level of virus it was initially thought that this infection was slow and it was
unclear whether treating this disease early, when symptoms were not apparent, was worthwhile.

Recognizing that constant levels of virus meant only that the rates of viral production and clearance were in
balance, but not necessarily slow, Perelson and David Ho from Rockefeller University used experimental drug
therapy to “perturb” the viral steady state. Mathematically modeling the response to this perturbation using a
system of ordinary differential equations that kept track of the concentrations of infected cells and HIV, and
fitting the experimental data to the model, revealed a plethora of new features of HIV infection.

Figure 5.19.1 shows that after therapy is initiated at time 0, levels of HIV RNA (a surrogate for virus) fall ten-
to a hundredfold in the first week or two of therapy. This suggested that HIV has a half-life (t1/2) of 1-2 days,
and thus maintaining the pre-therapy constant level of virus requires enormous virus production—in fact, the
amount of virus in the body must double every 1-2 days.

Detailed analysis showed that this viral decay was governed by two processes, clearance of free virus particles
(t1/2 < 6 hours) and loss of productively infected cells (t1/2 < 1.6 days). From this rapid clearance of virus one
could compute that at steady state, ~1010 virions are produced daily and given the mutation rate of HIV, that
each single and most double mutations of the HIV genome are produced daily. Thus, effective drug therapy

FIGURE 5.19.1 Model predictions (lines) of the biphasic decay of HIV viral load compared with typical patient data
(symbols). SOURCE: Courtesy of A.S. Perelson, Los Alamos National Laboratory.
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takes a very long time, and individuals who have not progressed to full-blown AIDS are asymptomatic.
As Box 5.19 suggests, computational models have been able to shed considerable light on this phenom-
enology, and these insights have altered the view of AIDS from a static picture in which the virus is
essentially dormant and does not do very much for a long time to a much more dynamic picture of a rough
balance between the virus and the immune system, both working very hard, for that period of time. These
findings have had tangible impact, because they have affected drug treatment regimes considerably.

More specifically, the average rate of HIV production in the human body is on the order of 1010

copies per day as noted in Box 5.19. Empirical data indicate that errors in HIV replication occur at a rate
on the order of 10–4 to 10–5 per base per generation, and since the HIV genome is 10,000 base pairs long,
the likelihood that a replicated genome will contain at least one error is 10 percent to nearly unity (and
the vast majority of these errors are errors in a single base). Because there are only four possible bases in
DNA (and hence each base can change into only one of three other bases), there are only 30,000 possible
single-base mutations of a given genome. An error rate of 10–4 to 10–5 per base per generation distrib-
uted among 1010 copies each with 104 bases means that each generation produces 109 to 1010 mutations,
which are distributed over the set of 30,000 possible mutations. Put differently, every new day brings to
life on the order of 105 instances of every possible single-base variant of HIV.

Thus, a drug known to bind to a particular sequence of amino acids at a certain location in a protein
today will face 105 to 106 new variants tomorrow against which its effectiveness will be questionable.
This fact suggests that drug treatment regimes must target multiple binding sites, and hence combina-
tion drug therapy is likely to be more effective because drug-resistant variants must then be the result of
multiple errors in the replication process (which occur much less frequently). This in fact reflects recent
experience with combination drug regimes.107

5.4.7 Epidemiology

Epidemiology is the study of the dynamics of disease in a population of individuals. Of particular
interest is the epidemiology of infectious diseases, which arise from contact between an environmental

Box 5.19 Continued

would require drug combinations that can sustain at least three mutations before resistance arises, and this
engendered the idea of triple combination therapy. Other analyses showed that the slope of viral decay was
proportional to the drug combinations’ antiviral efficacy, providing a means of comparing therapies.

Following the rapid 1-2 week “first phase” loss, the rate of HIV RNA decline slows. Models of this “second
phase” of decline, when fitted to the kinetic data, suggested that a small fraction of infected cells might live a
period of weeks while infected (t1/2 ~ 14 days).

Following upon the success of these joint modeling and experimental efforts, many similar studies were
undertaken and revealed a fourth, much longer time-scale for the decay of latently infected cells of 6-44
months. Latently infected cells, which harbor the HIV genome but do not produce virus, can hide from the
immune system and reignite infection when the cells are stimulated into proliferation. Clearing latently infect-
ed cells is one of the last remaining obstacles to eradicating HIV from the body.

107For further discussion, see A.G. Rodrigo, “HIV Evolutionary Genetics,” Proceedings of the National Academy of Sciences
96(19):10559-10561, 1999; B.A. Cipra, “Will Viruses Succumb to Mathematical Models?” SIAM News 32(2), 1999, available at
http://www.siam.org/siamnews/03-99/viruses.pdf.
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agent and an individual (e.g., an insect that bites an individual) or between individuals (e.g., an indi-
vidual who sneezes in a room filled with people) that leads to the transmission of disease. The dynamics
of infectious diseases depend on many things, such as the likelihood of transmission between carrier
agent and infected individual given that contact has been made, the geographical distribution of carrier
agents and individuals, and the susceptibility of individuals to the disease.

A central problem in epidemiology is how the dynamics of disease play out across geographical
space.108  Problems of spatial heterogeneity play out at many different levels of aggregation: individu-
als, families, work groups and firms, neighborhood, and cities. Box 5.20 provides an example taken
from the study of measles.

At the same time, spatial heterogeneity is not the only inhomogeneity of interest. For example, the
epidemiology of sexually transmitted diseases (STDs) cannot be separated from a consideration of their
dynamics in different social groups. For example, patterns of STDs in prostitutes and intravenous drug

Box 5.20
Spatial Heterogeneity in Epidemiology: An Example

One of the best illustrations of [the significance of spatial heterogeneity] is provided by the highly dynamic spa-
tiotemporal epidemic pattern of measles. An important set of analyses of simple, homogeneous models predicted the
possibility of chaotic dynamics; however, the resulting large-amplitude [predicted] epidemics generate unrealistical-
ly low persistence of infection in small communities. Adding successive layers of social and geographical space—
and moving from deterministic to stochastic models—improves spatial realism and may reduce the propensity for
chaos.

The major computational challenge in these highly nonlinear stochastic systems is to represent hierarchical spatial
complexity and especially its impact on vaccination strategies. Depending on the problem, all scales—from the
individual level to big cities—may be important, both in terms of social space [family and school infection dynamics]
and in terms of geographic spread and coherency.

. . . [A] central question is: How spatially aggregated and parsimonious a model can provide useful results in a given
context? This is particularly important in comparisons between directly transmitted human infections—where long-
range movements may bring infection dynamics comparatively close to mean field behavior (in which every individ-
ual is assumed to have equal contact with every other individual, thus experiencing the mean or average field)—and
the equivalent infections in natural populations, where more restricted movements and host population dynamics
add extra complexities.

It is risky to model at a given level of detail without having data at the relevant spatial grain. Notifiable infectious
diseases are unusually well [documented], with large and often as yet uncomputerized spatiotemporal data sets.
These data provide a huge potential testbed for developing methods for characterizing spatiotemporal dynamics in
nonlinear, nonstationary stochastic systems. An encouraging development is that the current, generally nonparamet-
ric, approaches to characterizing chaos and other nonlinear behaviors are increasingly incorporating lessons from
mechanistic epidemiological models.

SOURCE: Reprinted by permission from S.A. Levin, B. Grenfell, A. Hastings, and A.S. Perelson, “Mathematical and Computational
Challenges in Population Biology and Ecosystems Science,” Science 275(5298):334-343, 1997. Copyright 1997 AAAS. (References omitted.)

108K. Dietz, “The Estimation of the Basic Reproduction Number for Infectious Diseases,” Statistical Methods in Medical Research
2(1):23-41, 1993; A.D. Cliff and P. Haggett, Atlas of Disease Distributions: Analytic Approaches to Epidemiologic Data, Blackwell LTD,
Oxford, UK, 1988; D. Mollison and S.A. Levin, “Spatial Dynamics of Parasitism,” pp. 384-398 in Ecology of Infectious Diseases in
Natural Populations, B.T. Greenfell and A.P. Dobson, eds., Cambridge University, Cambridge, UK, 1995.
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users exhibit different dynamical patterns than those in the general population because of factors such
as rates of sexual contact with others (both inside and outside the individual’s own social group) and
different sexual practices of individuals in each group (e.g., use of condoms). Box 5.21 elaborates on this
notion in greater detail.

5.4.8 Evolution and Ecology

5.4.8.1 Commonalities Between Evolution and Ecology

No two fields in biology encompass such a broad range of levels of biological organization as
ecology and evolutionary biology. Although the two fields ask different questions, they both contend
with factors of space and time, and share common theories about relationships between individuals,
populations, and communities. The two intertwined fields view these relationships in different ways.
Evolutionary biologists want to understand and quantify the effect of environment (e.g., natural selec-
tion) on individuals and populations; ecologists want to understanding the role of individuals and
populations in shaping their environment (ecological inheritance, niche construction).

The two fields encompass a diverse assemblage of topics with applications in resource manage-
ment, epidemiology, and global change. In these fields, data have been relatively difficult to collect in
ways that relate directly to mathematical or computational models, although this has been changing
over the past 10 years. Thus, both fields have relied heavily on theory to advance their insights. In fact,
ecology and evolution have been the substrate for the development of important mathematical con-
cepts. The quantitative study of biological inheritance and evolution provided the context for statistics,
probability theory, stochasticity, and dynamical systems theory.

Box 5.21
Social Heterogeneity in Epidemiology: An Example

The main focus for modeling social space (the space of social interactions) and disease is, of course, on AIDS and
other sexually transmitted infections. Simple models illustrated clearly that heterogeneities in contact rates can
substantially alter the predicted course of epidemics. This area has seen an explosion of research, both in data
analysis of contact structures and in graph-theoretic and other approaches to modeling. Models and data analysis are
most productive when combined, especially in allowing the observations to limit the universe of possible networks.

The major computational challenge is how to deal with the complexity of networks, where concurrency of partner-
ships often means that closure to a few moments of the distribution is difficult. This problem is especially acute given
the sensitivity of obtaining data for STD networks, in that the nature of the network is generally only partially and
imperfectly known. The use of mathematical models for human immunodeficiency virus (HIV) transmission will be
especially important in assessing the impact of potential vaccines. Another major computational challenge—which
developed with the AIDS epidemic and is currently being applied to another pathogen, the bovine spongiform
encephalopathy agent—is to estimate the parameters of transmission models from disease incidence and other
demographic data.

One hope for the future for both of these areas is network information embedded in viral genomes. A body of recent
work indicates exciting possibilities for estimating epidemiological parameters from the birth and death processes of
pathogen evolutionary trees. More generally, new mathematical and computational techniques will be needed to
understand the epidemiological implications of the rapidly accumulating data on pathogen sequences, especially in
the context of parasite genetic diversity and the host immunological response to it.

SOURCE: Reprinted by permission from S.A. Levin, B. Grenfell, A. Hastings, and A.S. Perelson, “Mathematical and Computational
Challenges in Population Biology and Ecosystems Science,” Science 275(5298):334-343,1997. Copyright 1997 AAAS. (References omitted.)
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Among the fundamental questions in the study of evolution are those that seek to know the relative
strengths of natural selection, genetic drift, dispersal processes, and genetic recombination in shaping
the genome of a population—essentially the forces that provide genetic variability in a species. Both
ecologists and evolutionary biologists want to know how these forces lead to morphological changes,
speciation, and ultimately, survival over time. The fields seek theory, models, and data that can account
for genetic changes over time in large heterogeneous populations in which genetic information is
exchanged routinely in an environment that also exerts its influence and changes over time.

In addition to interest in genetic variability and fitness within a single species, the two fields are
interested in relationships between multiple species. In ecology, this manifests itself in questions of how
the individual forces of variability within and between species affect their relative ability to compete for
resources and space that leads to their survival or extinction—in other words, forces that determines the
biodiversity of an ecosystem (i.e., a set of biological organisms interacting among themselves and their
environment). Ecologists want to understand what determines the minimum viable population size for
a given population, the role of keystone species in determining the diversity of the ecosystem, and the
role of diversity in preservation of the ecosystem.

For evolutionary biologists, questions regarding relationships between species focus on trying to
understand the flow of genetic information over long periods of time as a measure of the relatedness of
different species and the effects of selection on the genetic contribution to phenotypes. Among the great
mysteries for evolutionary biologists is whether and how evolution relates to organismal development,
an interaction for which no descriptive language currently exists.

How will ecologists and evolutionary biologists answer these questions?  These fields have had few
tools to monitor interactions in real time. But new opportunities have emerged in areas from genomics
to satellite imaging and in new capabilities for the computer simulation of complex models.

5.4.8.2 Examples from Evolution

A plethora of genomic data is beginning to help untangle the relationship between traits, genes,
developmental processes, and environments. The data will serve as the substrate from which new
statistical conclusions can be drawn, for example, new methods for identifying inherited gene se-
quences such as those related to disease. To answer question about the process of genome rearrange-
ment, the possibility of comparing gene sequences from multiple organisms provides the basis for
testing tools that discern repeatable patterns and elucidate linkages.

As more detailed DNA and protein sequence information is compiled for more genes in more
organisms, computational algorithms for estimating parameters of evolution have become extremely
complex. New techniques will be needed to handle the likelihood functions and produce satisfactory
statistics in a reasonable amount of time. Studies of the role of environmental and genetic plasticity in
trait development will involve large-scale simulations of networks of linked genes and their interacting
products. Such simulations may well suggest new approaches to such old problems as the nature-
nurture dichotomy for human behaviors.

New techniques and the availability of more powerful computers have also led to the development
of highly detailed models in which a wide variety of components and mechanisms can be incorporated.
Among these are individual unit models that attempt to follow every individual in a population over
time, thereby providing insight into dynamical behavior (Box 5.22).

Levin argues that such models are “imitation[s] of reality that represent at best individual realiza-
tion of complex processes in which stochasticity, contingency, and nonlinearity underlie a diversity of
possible outcomes.”109  From the collective behaviors of individual units arise the observable dynamics

109S.A. Levin, B. Grenfell, A. Hastings, and A.S. Perelson, “Mathematical and Computational Challenges in Population Biology
and Ecosystems Science,” Science 275(5298):334-343, 1997.
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of the system. “The challenge, then, is to develop mechanistic models that begin from what is under-
stood about the interactions of the individual units, and to use computation and analysis to explain
emergent behavior in terms of the statistical mechanics of ensembles of such units.” Such models must
extrapolate from the effects of change on individual plants and animals to changes in the distribution of
individuals over longer time scales and broader space scales and hence in community-level patterns
and the fluxes of nutrients.

5.4.8.2.1 Reconstruction of the Saccharomyces Phylogenetic Tree Although the basic structure and
mechanisms underlying evolution and genetics are known in principle, there are many complexities
that force researchers into computational approaches in order to gain insight. Box 5.23 addresses com-
plexities such as multiple loci, spatial factors, and the role of frequency dependence in evolution, and
discusses a computational perspective on the evolution of altruism, a behavioral characteristic that is
counterintuitive in the context of individual organisms doing all that they can to gain advantage in the
face of selection pressures.

Box 5.22
The Dynamics of Evolution

Avida is a simulation software system developed at the Digital Life Laboratory at the California Institute of
Technology.1 In it, digital organisms have genomes comprised of a sequence of instructions that operate on a
virtual machine. These instructions include the ability to perform simple mathematical operations, copy val-
ues from memory location to memory location, provide input and output, and check conditions. Through a
sequence of instructions, these organisms can copy their genome, thereby reproducing asexually. Since the
software can simulate many hundreds of thousands of generations of evolution for thousands of organisms,
their digital evolution not only can be observed in reasonable lengths of time, but also can be precisely
inspected (since there are no inconvenient gaps in the fossil record). Moreover, alternate scenarios can be
explored by going back into evolutionary history and reversing the effects of mutations, for example. At a
minimum, this can be seen as experiment by analogy, revealing potential avenues for investigation or hypoth-
eses to test in actual biological evolution. A stronger argument holds that evolution is an abstract mathemat-
ical process and will operate under similar dynamics whether embodied in DNA in the physical world or in
digital simulations of it.

Avida has been used to explore how complex features can arise through mutation, competition, and selective
pressure.2 In a series of experiments, organisms were provided with a limited supply of energy units necessary
for the execution of their genome of instructions. However, organisms that performed any of a set of complex
logical operations were rewarded with an increased allowance and thus increased opportunities to reproduce.
More complicated logical operations provided proportionally greater rewards.

The experiment was seeded with an ancestral form that could perform none of those operations, containing
only the instructions to reproduce. Mutation arose through imperfect copying of the genome during reproduc-
tion. EQU, the most complex logical operation checked for [representing the logical statement (A and B) or
(~A and ~B)], arose in 23 out of 50 populations studied where the simpler operations also provided rewards.
The sequence of instructions that evolved to perform the operation varied widely in length and implementa-
tion. However, in other simulations where only EQU was rewarded, no lineages ever evolved it. This evi-
dence agrees with the standard theory of biological evolution—stated as early as Darwin—that complex
structures arise through the combination and modification of useful intermediate forms.

1C. Adami, Introduction to Artificial Life, Springer-Verlag, New York, 1998.
2R.E. Lenski, C. Ofria, R.T. Pennock, and C. Adami, “The Evolutionary Origin of Complex Features,” Nature 423:139-144, 2003.
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Box 5.23
Genetic Complexities in Evolutionary Processes

The dynamics of alleles at single loci are well understood, but the dynamics of alleles at two loci are still not
completely understood, even in the deterministic case. As a rule, two-locus models require the use of a variety
of computational approaches, from straightforward simulation to more complex analyses based on optimiza-
tion or the use of computer algebra systems. Three-locus models can be understood only through numerical
approaches, except for some very special cases.

Compare these analytical capabilities to the fact that the number of loci exhibiting genetic variation in popu-
lations of higher organisms is well into the thousands. Thus, the number of possible genotypes can be much
larger than the population. In such a situation, the detailed population simulation (i.e., a detailed consider-
ation of events at each locus) leads to problems of substantial computational difficulty.

An alternative is to represent the population as phenotypes—that is, in terms of traits that can be directly
observed and described. For example, certain traits of individuals are quantitative in the sense that they
represent the sum of multiple small effects. Efforts have been undertaken to integrate statistical models of the
dynamics of quantitative traits with more mechanistic genetic approaches, though even under simplifying
assumptions concerning the relation between genotype and phenotype, further approximations are required
to obtain a closed system of equations.

Frequency dependence in evolution refers to the phenomenon in which the fitness of an individual
depends both on its own traits and on the traits of other individuals in the population—that is, selection is
dependent on the frequency with which certain traits appear in the population, not just on pressures from
the environment.

This point arises most strongly in understanding how cooperation (altruism) can evolve through individual
selection. The simplest model is the game of prisoner’s dilemma, in which the game-theoretic solution for a
single encounter between parties is unconditional noncooperation. However, in the iterated prisoner’s dilem-
ma, the game theoretic solution is a strategy known as “tit-for-tat,” which begins with cooperation and then
uses the strategy employed by the other player in the previous interaction. (In other words, the iterated prison-
er’s dilemma stipulates repeated interactions over time between players.)

Although the iterated prisoner’s dilemma yields some insight into how cooperative behavior might emerge
under some circumstances, it is a highly and perhaps oversimplified model. Most importantly, it does not
account for possible spatial localizations of individuals—a point that is important in light of the fact that
individuals who are spatially separated have low probabilities of interacting. Because the evolution of traits
dependent on population frequency requires knowledge of which individuals are interacting, more realistic
models introduce some explicit spatial distribution of individuals—and, for these, simulations are required to
dynamical understanding. These more realistic models suggest that spatial localization affects the evolution of
both cooperative and antagonistic behaviors.

SOURCE: Adapted from S.A. Levin, B. Grenfell, A. Hastings, and A.S. Perelson, “Mathematical and Computational Challenges in
Population Biology and Ecosystems Science,” Science 275(5298):334-343, 1997. (References in the original.)
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Along these lines, a particularly interesting work on the reconstruction of phylogenies was reported
in 2003 by Rokas et al.110  One of the primary goals of evolutionary research has been understanding the
historical relationships between living organisms—reconstruction of the phylogenetic tree of life. A
primary difficulty in phylogenetic reconstruction is that different single-gene datasets often result in
different and incongruent phylogenies. Such incongruences occur in analyses at all taxonomic levels,
from phylogenies of closely related species to relationships between major classes or phyla and higher
taxonomic groups.

Many factors, both analytical and biological, may cause incongruence. To overcome the effect of
some of these factors, analysis of concatenated datasets has been used. However, phylogenetic analyses
of different sets of concatenated genes do not always converge on the same tree, and some studies have
yielded results at odds with widely accepted phylogenies.

Rokas et al. exploited genome sequence data for seven Saccharomyces species and for the outgroup
fungus Candida albicans to construct a phylogenetic tree. Their results suggested that datasets consisting of
a single gene or a small number of concatenated genes had a significant probability of supporting conflict-
ing topologies, but that use of the entire dataset of concatenated genes resulted in a single, fully resolved
phylogeny with the maximum likelihood. In addition, all alternative topologies resulting from single-gene
analyses were rejected with high probability. In other words, even though the individual genes examined
supported alternative trees, the concatenated data exclusively supported a single tree. They concluded
that “the maximum support for a single topology regardless of method of analysis is strongly suggestive
of the power of large data sets in overcoming the incongruence present in single-gene analyses.”

5.4.8.2.2 Modeling of Myxomatosis Evolution in Australia Evolution also provides a superb and easy-
to-understand example of time scales in biological phenomena. Around 1860, a nonindigenous rabbit
was introduced into Australia as part of British colonization of that continent. Since this rabbit had no
indigenous foe, it proliferated wildly in a short amount of time (about 20 years). Early in the 1950s
Australian authorities introduced a particular strain of virus that was deadly to the rabbit.

The data indicated that in the short term (say, on a time scale of a few months), the most
virulent strains of the virus were dominant (i.e., the virus had a lethality of 99.8 percent). This is not
surprising, in the sense that one might expect virulence to be a measure of viral fitness. However, in
the longer term (on a scale of decades), similar measurements indicate that these more virulent
strains were no longer dominant, and the dominant niche was occupied by less virulent strains
(lethality of 90 percent or less). The evolutionary explanation for this latter phenomenon is that an
excessively virulent virus would run the risk of killing off its hosts at too rapid a rate, thereby
jeopardizing its own survival. The underlying mechanism responsible for this counterintuitive
phenomenon is that transmission of the virus depended on mosquitoes feeding from live rabbits.
Rabbits that were infected with the more virulent variant died quickly, and thus, fewer were avail-
able as sources of that variant.

The above system was modeled in closed form based on a set of coupled differential equations; this
model was successful in reproducing the essential qualitative features described above.111  In 1990, this
model was extended by Dwyer et al. to incorporate more biologically plausible features.112  For ex-
ample, the evolution of rabbit and virus reacting to each other was modeled explicitly. A multiplicity of

110A. Rokas, B.L. Williams, N. King, and S.B. Carroll, “Genome-scale Approaches to Resolving Incongruence in Molecular
Phylogenies,” Nature 425(6960):798-804, 2003.

111S. Levin and D. Pimentel, “Selection of Intermediate Rates of Increase in Parasite-Host Systems,” The American Naturalist
117(3), 1981.

112G. Dwyer, S.A. Levin, and L.A. Buttel, “A Simulation Model of the Population Dynamics and Evolution of Myxomatosis,”
Ecological Monographs 60(4):423-447, 1990.
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virus vectors was modeled, each with different transmission efficiencies, rather than assuming a single
vector. The inclusion of such features, cou pled with exploitation of a wealth of data available on this
system, allowed Dwyer et al. to investigate questions that could not be addressed in the earlier model.
These questions included whether the system will continue to evolve antagonistically and whether the
virus will be able to control the rabbit population in the future.

More broadly, this example illustrates the important lesson that both time scales are equally signifi-
cant from an evolutionary perspective, and one is not more “fundamental” than the other when it comes
to understanding the dynamical behavior of the system. Furthermore, it demonstrates that pressures for
natural selection can operate at many different levels of complexity.

5.4.8.2.3 The Evolution of Proteins By making use of simple physical models of proteins, it is possible
to model evolution under different evolutionary, structural, and functional scenarios. For example,
cubic lattice models of proteins can be used to model enzyme evolution involving binding to two
hydrophobic substrates. Gene duplication coupled to subfunctionalization can be used to predict en-
zyme gene duplicate retention patterns and compare with genomic data.113 This type of physical mod-
eling can be expanded to other evolutionary models, including those that incorporate positive selective
pressures or that vary population genetic parameters. At a structural level, they can be used to address
issues of protein surface-area-to-volume ratios or the evolvability of different folds. Ultimately, such
models can be extended to real protein shapes and can be correlated to the evolution of different folds
in real genomes.114

The role of structure in evolution during potentially adaptive periods can also be analyzed. A
subset of positive selection will be dictated by structural parameters and intramolecular coevolution.
Common interactions, like RKDE ionic interactions can be detected in this manner. Similarly, less
common interactions, like cation-p interactions, can also be detected and the interconversion between
different modes of interactions can be assessed statistically.

One important tool underlying these efforts is the Adaptive Evolution Database (TAED), a phyloge-
netically organized database that gathers information related to coding sequence evolution.115  This
database is designed to both provide high-quality gene families with multiple sequence alignments and
phylogenetic trees for chordates and embryophytes and to enable answers to the question, “What
makes each species unique at the molecular genomic level?”

Starting with GenBank, genes have been grouped into families, and multiple sequence alignments
and phylogenetic trees have been calculated. In addition to multiple sequence alignments and phyloge-
netic trees for all families of chordate and embryophyte sequences, TAED includes the ratio of
nonsynonymous to synonymous nucleotide substitution rates (Ka/Ks) for each branch of every phyloge-
netic tree. This ratio, when significantly greater than 1, is an indicator of positive selection and poten-
tially a change of function of the encoded protein in closely related species, and has been useful in the
construction of phylogenetic trees with probabilistic reconstructed ancestral sequences calculated using
both parsimony and maximum likelihood approaches. With a mapping of gene tree to species tree, the
branches whose ratio is significantly greater than 1 are collated together in a phylogenetic context.

113F.N. Braun and D.A. Liberles, “Retention of Enzyme Gene Duplicates by Subfunctionalization;” International Journal of
Biological Macromolecules 33(1-3):19-22, 2003.

114H. Hegyi, J. Lin, D. Greenbaum, and M. Gerstein, “Structural Genomics Analysis: Characteristics of Atypical, Common, and
Horizontally Transferred Folds,” Proteins 47(2):126-141, 2002.

115D.A. Liberles, “Evaluation of Methods for Determination of a Reconstructed History of Gene Sequence Evolution.” Molecu-
lar Biology and Evolution 18(11):2040-2047, 2001; D.A. Liberles, D.R. Schreiber, S. Govindarajan, S.G. Chamberlin, and S.A. Benner,
“The Adaptive Evolution Database (TAED),” Genome Biology 2(8):research0028.1-0028.6, 2001; C. Roth, M.J. Betts, P. Steffansson,
G. Sælensminde, and D.A. Liberles, “The Adaptive Evolution Database (TAED): A Phylogeny-based Tool for Comparative
Genomics,” Nucleic Acids Research 33(Database issue):D495-D497, 2005.
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116E.V. Koonin, N.D. Fedorova, J.D. Jackson, A.R. Jacobs, D.M. Krylov, K.S. Makarova, R. Mazumder, et al., “A Comprehen-
sive Evolutionary Classification of Proteins Encoded in Complete Eukaryotic Genomes,” Genome Biology 5(2):R7, 2004. (Cited in
Roth et al., “The Adaptive Evolution Database,” 2005.)

117R. Rossnes, “Phylogenetic Reconstruction of Ancestral Character States for Gene Expression and mRNA Splicing Data,”
M.Sc. thesis, Universtiy of Bergen, Norway, 2004. (Cited in Roth et al., 2005.)

118See, for example, G.F. Joyce, “The Antiquity of RNA-based Evolution,” Nature 418(6894):214-221, 2002.
119M. Eigen, “Selforganization of Matter and the Evolution of Biological Macromolecules,” Naturwissenschaften 58(10):465-523,

1971.
120P. Szabó, I Scheuring, T. Czaran, and E. Szathmary, “In Silico Simulations Reveal That Replicators with Limited Dispersal

Evolve Towards Higher Efficiency and Fidelity,” Nature 420(6913):340-343, 2002. A very helpful commentary on this article can
be found in G.F. Joyce, “Molecular Evolution: Booting Up Life,” Nature 420(6894):278–279, 2002. The discussion in Section
5.4.8.2.4 is based largely on this article.

121W.K. Johnston, P.J. Unrau, M.S. Lawrence, M.E. Glasner, and D.P. Bartel, “RNA-catalyzed RNA Polymerization: Accurate
and General RNA-Templated Primer Extension,” Science 292(5520):1319-1325, 2001.

The TAED framework is expandable to incorporate other genomic-scale information in a phyloge-
netic context. This is important because coding sequence evolution (e.g., as reflected in the Ka/Ks ratio)
is only one part of the molecular evolution of genomes driving phenotypic divergence. Changes in gene
content116 and phylogenetic reconstructions of changes in gene expression and alternative splicing
data117 can indicate where other significant lineage-specific changes have occurred. Altogether, phylo-
genetic indexing of genomic data presents a powerful approach to understanding the evolution of
function in genomes.

5.4.8.2.4 The Emergence of Complex Genomes How did life get started on Earth? Today, life is based on
DNA genomes and protein enzymes. However, biological evidence exists to suggest that in a previous
era, life was based on RNA, in the sense that genetic information was contained in RNA sequences and
phenotypes were expressed as catalytic properties of RNA.118

An interesting and profound issue is therefore to understand the transition from the RNA to the
DNA world, one element of which is the fact that DNA genomes are complex structures. In 1971, Eigen
found an explicit relationship between the size of a stable genome and the error rate inherent in its
replication, specifically that the size of the genome was inversely proportional to the per-nucleotide
replication error rate.119  Thus, for a genome of length L to be reasonably stable over successive genera-
tions, the maximum tolerable error rate in replication could be no more than 1/L per nucleotide.
However, more precise replication mechanisms tend to be more complex. Given that the replication
mechanism must itself be represented in the genome, the puzzle is that a precise replication mecha-
nism is needed to maintain a complex genome, but a complex genome is required to encode such a
mechanism.

The only possible answer to this puzzle is that complex genomes evolved from simpler ones. Szabó
et al. investigated this possibility through computer simulations.120  They constructed a population of
digital genomes subject to evolutionary forces and found that under a certain set of circumstances, both
genome size and replication fidelity increased with the run time of the simulation. However, such
behavior was dependent on the existence of a sufficient amount of spatial isolation of the evolving
population. In the absence of separation (i.e., in the limit of very rapid diffusion of genomes across the
two-dimensional surface to which they were confined), genome complexity and replication fidelity
were both limited. However, if diffusion is slow (i.e., the characteristic time constant of diffusion is less
than the time scale of replication), both complexity and fidelity increase.

In addition, Johnston et al. have synthesized in the laboratory a catalytic RNA molecule that con-
tains about 200 nucleotides and synthesizes RNA molecules of up to 14 nucleotides, with an error rate
of about 3 percent per residue.121  This laboratory demonstration, coupled with the computational
finding described above, suggest that a small RNA genome that operates as an RNA replicase with
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modest efficiency and fidelity could evolve a succession of ever-larger genomes and ever-higher repli-
cation efficiencies.

5.4.8.3 Examples from Ecology122

Simulation-based study of an ecosystem considers the dynamic behavior of systems of individual
organisms as they respond to each other and to environmental stimuli and pressures (e.g., climate) and
examines the behavior of the ecosystem in aggregate terms. However, no individual run of such a
simulation can be expected to predict the detailed behavior of each individual organism within an
ecosystem. Rather, the appropriate test of a simulation’s fidelity is the extent to which it can, through a
process of judicious averaging of many runs, predict features that are associated with aggregation at
many levels of spatial and/or temporal detail. These more qualitative features provide the basis for
descriptions of ecosystem dynamics that are robust across a variety of dynamical scenarios that are
different at a detailed level and also provide high-level descriptions that can be more readily interpreted
by researchers.

Because of the general applicability of the approach described above, simulations of dynamical
behavior can be developed for aggregations of any organisms as long as they can be informed by
adequate understandings of individual-level behavior and the implications of such behavior for interac-
tions with other individuals and with the environment.

Note also the key role played by ecosystem heterogeneity. Spatial heterogeneity is one obvious way
in which nonuniform distributions play a role. But in biodiversity, functional heterogeneity is also
important. In particular, essential ecosystem functions such as the maintenance of fluxes of certain
nutrients and pollutants, the mediation of climate and weather, and the stabilization of coastlines may
depend not on the behavior of all species within the ecosystem but rather on a limited subset of these
species. If biodiversity is to be maintained, the most fragile and functionally critical subsets species must
be identified and understood.

The mathematical and computational challenges range from techniques for representing and ac-
cessing datasets, to algorithms for simulation of large-scale spatially stochastic, multivariate systems, to
the development and analysis of simplified description. Novel data acquisition tools (e.g., a satellite-
based geographic information system that records changes for insertion in the simulations) would be
welcome in a field that is relatively data poor.

5.4.8.3.1 Impact of Spatial Distribution in Ecosystems An important dimension of ecological environ-
ments is how organisms interact with each other. One often-made computationally simple assumption is
that an organism is equally likely to interact with every other organism in the environment. Although this
is a pragmatic assumption, actual ecosystems are physical and organisms interact only with a very small
number of other organisms—namely, the ones that are nearby in a spatial sense. Moreover, localized
selection—in which a fitness evaluation is undertaken only under nearest neighbors—is also operative.

Introducing these notions increases the speciation rate tremendously, and the speculation is that in
a nonlocalized environment, the pressures on the population tend toward population uniformity—
everything looks similar, because each entity faces selection pressure from every other entity. When
localization occurs, different species emerge in different spatial areas. Further, the individuals that are
evolving will start to look quite different from each other, even though they have (comparably) high

122Section 5.4.8.3 is based largely on material taken from S.A. Levin, B. Grenfell, A. Hastings, and A.S. Perelson, “Mathematical
and Computational Challenges in Population Biology and Ecosystems Science,” Science 275(5298):334-343, 1997.
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fitness ratings. (This phenomenon is known as convergent evolution, in which a given environment
might evolve several different species that are in some sense equally well adapted to that environment.)

As an example of spatial localization, Kerr et al. developed a computational model to examine the
behavior of a community consisting of three strains of E. coli,123  based on a modification of the lattice-
based simulation of Durrett and Levin.124  One of the strains carried a gene that created an antibiotic
called colicin. (The colicin-producing strain, C, was immune to the colicin it produced.) A second strain
was sensitive to colicin (S), while a third strain was resistant to colicin (R). Furthermore, the factors that
make the S strain sensitive also facilitate its consumption of certain nutrients, and the R strain is less able
to consume these nutrients. However, because the R strain does not have to produce colicin, it avoids a
metabolic cost incurred by the C strain. The result is that C bacteria kill S bacteria, S bacteria thrive
where R bacteria do not, and R bacteria thrive where C bacteria do not. The community thus satisfies a
“rock-paper-scissors” relationship.

The intent of the simulation was to explore the spatial scale of ecological processes in a community
of these three strains. It was found found (and confirmed experimentally) that when dispersal and
interaction were local, patches of different strains formed, and these patches chased one another over
the lattice—type C patches encroached on S patches, S patches displaced R patches and R patche
invaded C patches. Within this mosaic of patches, the local gains made by any one type were soon
enjoyed by another type; hence the diversity of the system was maintained. However, dispersal and
interaction were no longer exclusively local (i.e., in the “well-mixed” case in which all three strains are
allowed to interact freely with each other): continual redistribution of C rapidly drove S extinct, and R
then came to dominate the entire community

5.4.8.3.2 Forest Dynamics125 To simulate the growth of northeastern forests, a stochastic and mecha-
nistic model known as SORTIE has been developed to follow the fates of individual trees and their
offspring. Based on species-specific information on growth rates, fecundity, mortality, and seed dis-
persal distances, as well as detailed, spatially explicit information about local light regimes, SORTIE
follows tens of thousands of trees to generate dynamic maps of distributions of nine dominant or
subdominant species of tree that look like real forests and match data observed in real forests at
appropriate levels of spatial resolution. SORTIE predicts realistic forest responses to disturbances (e.g.,
small circles within the forest boundaries within which all trees are destroyed), clear-cuts (i.e., large
disturbances), and increased tree mortality.

SORTIE consists of two units that account for local light availability and species life history for each
of nine tree species. Local light availability refers to the availability of light at each individual tree. This
is a function of all of the neighboring trees that shade the tree in question. Information on the spatial
relations among these neighboring tree crowns is combined with the movement of the sun throughout
the growing season to determine the total, seasonally averaged light expressed as a percentage of full
sun. In other words, the growth of any given tree depends on the growth of all neighboring trees.

The species life history (available for each of nine tree species) provides the relationship between
radial growth rates as a function of its local light environment and is based on empirically estimated
life-history information. Radial growth predicts height growth, canopy width, and canopy depth in
accordance with estimated allometric relations. Fecundity is estimated as an increasing power function
of tree size, and seeds are dispersed stochastically according to a relation whereby the probability of

123B. Kerr, M.A. Riley, M.W. Feldman, and B.J. Bohannan, “Local Dispersal Promotes Biodiversity in a Real-life Game of Rock-
Paper-Scissors,” Nature 418(6894):171-174, 2002.

124R. Durrett and S. Levin, “Allelopathy in Spatially Distributed Populations,” Journal of Theoretical Biology 185(2):165-171, 1997.
125Section 5.4.8.3.2 is based largely on D.H. Deutschman, S.A. Levin, C. Devine, and L.A. Buttel, “Scaling from Trees to Forests:

Analysis of a Complex Simulation Model,” Science Online supplement to Science 277(5332), 1997, available at http://
www.sciencemag.org/content/vol277/issue5332. Science Online article available at http://www.sciencemag.org/feature/data/
deutschman/home.htm.
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dispersal declines with distance. Mortality risk is also stochastic and has two elements: random mortal-
ity and mortality associated with suppressed growth.

Because SORTIE is intended to aggregate statistical properties of forests, an ensemble of simulation runs
is necessary, in which different degrees of smoothing and aggregation are used to determine how much
information is lost by averaging and to find out where error is compressed and where it is enlarged in the
course of this process. SORTIE is a computation-intensive simulation even for individual simulations, be-
cause multiple runs are needed to generate the necessary ensembles for statistical analysis. In addition,
simulations carried out for heterogeneous environments require an interface between large dynamic simula-
tions and geographic information systems, providing real-time feedbacks between the two.

5.5 TECHNICAL CHALLENGES RELATED TO MODELING

A number of obstacles and difficulties must be overcome if modeling is to be made useful to life
scientists more broadly than is the case today. The development of a sophisticated computational model
requires both a conceptual foundation and implementation. Challenges related to conceptual founda-
tions can be regarded as mathematical and analytical; challenges related to implementation can be
regarded as computational or, more precisely, as related to computer science (Box 5.24).

Today’s mathematical tools for modeling are limited. Nonlinear dynamics and bifurcation theory
provide some of the most well-developed applied mathematical techniques and offer great successes in
illuminating simple nonlinear systems of differential equations. But they are inadequate in many situa-
tions, as illustrated by the fact that understanding global stability in systems larger than four equations
is prohibitively hard, if not unrealistic. Visualization of high-dimensional dynamics is still problematic
in computational as well as analytical frameworks; the question remains as to how to represent such
complex dynamics in the best, most easily understood ways. Moreover, many high-dimensional sys-
tems have effectively low-dimensional dynamics. A challenge is to extract the dynamical behavior from
the equations without first knowing what the low-dimensional subspace is. Box 5.25 describes one new
and promising approach to dealing with high-dimensional multiscale problems.

Other mathematical methods and new theory will be needed to find solutions that apply not only to
biological problems, but to other scientific and engineering applications as well. These include methods
for global optimization and for reverse engineering of structure (of any “black box,” be it a network of
genes, a signal transduction pathway, or a neuronal system) based on data elicited in response to
stimuli and perturbations.

Identification of model structure and parameters in nonlinear systems is also nontrivial. This is
especially true in biological systems due to incomplete knowledge and essentially limitless types of
interactions. Decomposition of complex systems into simpler subsystems (“modules”) is an important
challenge to our ability to analyze and understand such systems (a point discussed in Chapter 6).
Development of frameworks to incorporate moving boundaries and changing geometries or shapes is
essential to describing biological systems. This is traditionally a difficult area. Ideally, it would be
desirable to be able to synthesize and analyze models that have nonlinear deterministic as well as
stochastic elements, and continuous as well as discrete, algebraic constraints, with other more tradi-
tional nonlinear dynamics. (See Section 5.3.2 for greater detail.) All of these can be viewed as challenges
in nonlinear dynamics aspects of modeling.

Further developing both computational (numerical simulation) methods and analytical methods
(bifurcation, perturbation methods, asymptotic analysis) for large nonlinear systems will invariably
mean great progress in the ability to build more elaborate and detailed models. However, with these
large models come large challenges. One is how to find methodical ways of organizing parameter space
exploration for systems that have numerous parameters. Another is the development of ways to codify
and track assumptions that have gone into the construction of a model. Understanding these assump-
tions (or simplifications) is essential to understanding the limitations of a model and when its predic-
tions are no longer biologically relevant.
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Box 5.24
Modeling Challenges for Computer Science

Integration Methods

• Methods for integrating dissimilar mathematical models into complex and integrated overall models
• Tools for semantic interoperability

Models

• High-performance, scalable algorithms for network analyses and cell modeling
• Methods to propagate measures of confidence from diverse data sources to complex models

Validation

• Robust model and simulation-validation techniques (e.g., sensitivity analyses of systems with huge num-
bers of parameters, integration of model scales)
• Methods for assessing the accuracy of genome-annotation systems

SOURCE: U.S. Department of Energy, Report on the Computer Science Workshop for the Genomes to Life Program, Gaithersburg, MD,
March 6-7, 2002, available at http://DOEGenomesToLife.org/compbio/.

Box 5.25
Equation-free Multiscale Computation:

Enabling Microscopic Simulators to Perform System-level Tasks

Yannis Kevrikides of Princeton University and his colleagues have developed a framework for computer-aided
multiscale analysis. This framework enables models at a “fine” (microscopic, stochastic) level of description to
perform modeling tasks at a “coarse” (macroscopic, systems) level. These macroscopic modeling tasks, yielding
information over long time and large space scales, are accomplished through appropriately initialized calls to the
microscopic simulator for only short times and small spatial domains: “patches” in macroscopic space-time.

In general, traditional modeling approaches require the derivation of macroscopic equations that govern the
time evolution of a system. With these equations in hand (usually partial differential equations (PDEs)), a variety
of analytical and numerical techniques for their solution is available. The framework of Kevrikides and col-
leagues, known as the equation-free (EF) approach can, when successful, bypass the derivation of the macro-
scopic evolution equations when these equations conceptually exist but are not available in closed form.

The advantage of this approach is that the long-term behavior of the system bypasses the computationally
intensive calculations needed to solve the PDEs that describe the system. That is, the EF approach enables an
alternative description of the physics underlying the system at the microscopic scale (i.e., its behavior on
relatively short time and space scales) provide information about the behavior of the system over relatively
large time and space scales directly without expensive computations. In effect, the EF approach constitutes a
systems identification-based, “closure on demand” computational toolkit, bridging microscopic-stochastic
simulation with traditional continuum scientific computation and numerical analysis.

SOURCE: The EF approach was first introduced by Yannis Kevrikides and colleagues in K. Theodoropoulos et al., “Coarse Stability and
Bifurcation Analysis Using Timesteppers: A Reaction Diffusion Example,” Proceedings of the National Academy of Sciences 97:9840, 2000,
available at http://www.pnas.org/cgi/reprint/97/18/9840.pdf. The text of this box is based on excerpts from an abstract describing a presen-
tation by Kevrikides on April 16, 2003, to the Singapore-MIT Alliance program on High Performance Computation for Engineered Systems
(HPCES); abstract available at http://web.mit.edu/sma/events/seminar/kevrekidis.htm.
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In the second category, issues related to implementing the model arise. Often such issues involve
the actual code used to implement the model. Computational models are, in essence, large computer
programs; issues of software development come to the fore. As the desire for and utility of computa-
tional modeling increase, the needs for software are growing rather than diminishing as hardware
becomes more capable. On the other hand, progress in software development and engineering over the
last several decades has not been nearly as dramatic as progress in hardware capability, and there
appears to be no magic bullets on the horizon that will revolutionize the software development process.

This is not to say that good software engineering does not or should not play a role in the development
of computational models. Indeed, the Biomedical Information Science and Technology Initiative (BISTI)
Planning Workshop of January 15-16, 2003, explicitly recommended that NIH require grant applications,
proposing research in bioinformatics or computational biology to adopt as appropriate, accepted practices
of software engineering.126  Section 4.5 describes some of the elements of good software engineering in the
context of tool development, and the same considerations apply to model development.

A second important challenge as large simulation models become more prevalent is a standard
specification language to unambiguously specify the model, its parameters, annotations, and even the
means by which it is to be scored against data. The challenge will be to provide a language flexible
enough to capture all interesting biological processes and incorporate models at different levels of
abstraction and in different mathematical paradigms, including stochastic differential, partial differen-
tial, algebraic, and discrete equations. It may prove necessary to develop a set of nested languages—for
example, a language that specifies the biological process at a very high level and a linked language that
specifies the mathematical representation of each process. There are some current attempts at these
languages based on the XML framework. SBML and CellML are attempts in this direction.

Finally, many biological modeling applications involve a problem space that is not well understood
and may even be intended to explore queries that are not well formulated. Thus, there is a high
premium on reducing the labor and time involved to produce an application that does something
useful. In this context, technologies for “rapid prototyping” of biological models have considerable
interest.127

126See http://www.bisti.nih.gov/2003meeting/report.cfm.
127Note, however, that in the rapid prototyping process often used to create commercial applications, there is a dialogue

between developer and user that reveals what the user would find valuable: once the developer knows what the user really
wants, the software development effort is straightforward. By contrast, in biological applications, it is nature that determines the
appropriate structuring and formulation of a problem, and a problem cannot be structured in a certain way simply because it is
convenient to do so. Thus, technologies for the rapid prototyping of biological models must afford the ability to rearrange model
components and connections between components with ease.


